DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing Light Atoms at Subnanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography

Abstract

Atomic resolution imaging of light elements in electron-transparent materials has long been a challenge. Biomolecular materials, for example, are rapidly altered by incident electrons. We demonstrate a scanning transmission electron microscopy (STEM) technique, called STEM holography, capable of efficient structural analysis of beam-sensitive nanomaterials. STEM holography measures the absolute phase and amplitude of electrons passed through a specimen via interference with a vacuum reference wave. We use an amplitude-dividing nanofabricated grating to prepare multiple beams focused at the sample. We configure the postspecimen microscope imaging system to overlap the beams, forming an interference pattern. We record and analyze the pattern at each 2D-raster-scan-position, reconstructing the complex object wave. As a demonstration, we image gold nanoparticles on an amorphous carbon substrate at 2.4 Å resolution. In conclusion STEM holography offers higher contrast of the carbon while maintaining gold atomic lattice resolution compared to high angle annular dark field STEM.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [1];  [3];  [3]; ORCiD logo [1]
  1. Univ. of Oregon, Eugene, OR (United States)
  2. Univ. of Oregon, Eugene, OR (United States); Georg-August-Univ. Gottingen, Gottingen (Germany)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1510749
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 11; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 4D-STEM; Electron holography; electron interferometry; nanomaterials imaging; STEM; TEM

Citation Formats

Yasin, Fehmi S., Harvey, Tyler R., Chess, Jordan J., Pierce, Jordan S., Ophus, Colin, Ercius, Peter, and McMorran, Benjamin J. Probing Light Atoms at Subnanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b03166.
Yasin, Fehmi S., Harvey, Tyler R., Chess, Jordan J., Pierce, Jordan S., Ophus, Colin, Ercius, Peter, & McMorran, Benjamin J. Probing Light Atoms at Subnanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography. United States. https://doi.org/10.1021/acs.nanolett.8b03166
Yasin, Fehmi S., Harvey, Tyler R., Chess, Jordan J., Pierce, Jordan S., Ophus, Colin, Ercius, Peter, and McMorran, Benjamin J. Fri . "Probing Light Atoms at Subnanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography". United States. https://doi.org/10.1021/acs.nanolett.8b03166. https://www.osti.gov/servlets/purl/1510749.
@article{osti_1510749,
title = {Probing Light Atoms at Subnanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography},
author = {Yasin, Fehmi S. and Harvey, Tyler R. and Chess, Jordan J. and Pierce, Jordan S. and Ophus, Colin and Ercius, Peter and McMorran, Benjamin J.},
abstractNote = {Atomic resolution imaging of light elements in electron-transparent materials has long been a challenge. Biomolecular materials, for example, are rapidly altered by incident electrons. We demonstrate a scanning transmission electron microscopy (STEM) technique, called STEM holography, capable of efficient structural analysis of beam-sensitive nanomaterials. STEM holography measures the absolute phase and amplitude of electrons passed through a specimen via interference with a vacuum reference wave. We use an amplitude-dividing nanofabricated grating to prepare multiple beams focused at the sample. We configure the postspecimen microscope imaging system to overlap the beams, forming an interference pattern. We record and analyze the pattern at each 2D-raster-scan-position, reconstructing the complex object wave. As a demonstration, we image gold nanoparticles on an amorphous carbon substrate at 2.4 Å resolution. In conclusion STEM holography offers higher contrast of the carbon while maintaining gold atomic lattice resolution compared to high angle annular dark field STEM.},
doi = {10.1021/acs.nanolett.8b03166},
journal = {Nano Letters},
number = 11,
volume = 18,
place = {United States},
year = {Fri Sep 28 00:00:00 EDT 2018},
month = {Fri Sep 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highly efficient electron vortex beams generated by nanofabricated phase holograms
journal, January 2014

  • Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim
  • Applied Physics Letters, Vol. 104, Issue 4
  • DOI: 10.1063/1.4863564

Electron Interferometer
journal, March 1952


The Formation of the Diffraction Image with Electrons in the Gabor Diffraction Microscope
journal, January 1952

  • Haine, M. E.; Mulvey, T.
  • Journal of the Optical Society of America, Vol. 42, Issue 10
  • DOI: 10.1364/JOSA.42.000763

Sculpturing the electron wave function using nanoscale phase masks
journal, September 2014


Path-separated electron interferometry in a scanning transmission electron microscope
journal, April 2018

  • Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 20
  • DOI: 10.1088/1361-6463/aabc47

A New Microscopic Principle
journal, May 1948


Ultra-high resolution with off-axis STEM holography
journal, August 2003


Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy
journal, September 1994

  • Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu
  • Japanese Journal of Applied Physics, Vol. 33, Issue Part 2, No. 9B
  • DOI: 10.1143/JJAP.33.L1352

Electron tomography and holography in materials science
journal, April 2009

  • Midgley, Paul A.; Dunin-Borkowski, Rafal E.
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2406

Experimental study of amplitude and phase detection limits in electron holography
journal, August 1996


Differential phase contrast in TEM
journal, October 1996


Random vs realistic amorphous carbon models for high resolution microscopy and electron diffraction
journal, December 2013

  • Ricolleau, C.; Le Bouar, Y.; Amara, H.
  • Journal of Applied Physics, Vol. 114, Issue 21
  • DOI: 10.1063/1.4831669

Quantitative characterization of electron detectors for transmission electron microscopy
journal, December 2013

  • Ruskin, Rachel S.; Yu, Zhiheng; Grigorieff, Nikolaus
  • Journal of Structural Biology, Vol. 184, Issue 3
  • DOI: 10.1016/j.jsb.2013.10.016

Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
journal, May 2013

  • Li, Xueming; Mooney, Paul; Zheng, Shawn
  • Nature Methods, Vol. 10, Issue 6
  • DOI: 10.1038/nmeth.2472

Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures
journal, August 2016

  • Yang, H.; Rutte, R. N.; Jones, L.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12532

Evaluation of residual aberration in fifth-order geometrical aberration correctors
journal, February 2018

  • Morishita, Shigeyuki; Kohno, Yuji; Hosokawa, Fumio
  • Microscopy, Vol. 67, Issue 3
  • DOI: 10.1093/jmicro/dfy009

Electron holography available in a non-biprism transmission electron microscope
journal, January 1994


Cryo-scanning transmission electron tomography of biological cells
journal, July 2016

  • Elbaum, Michael; Wolf, Sharon G.; Houben, Lothar
  • MRS Bulletin, Vol. 41, Issue 07
  • DOI: 10.1557/mrs.2016.136

Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution
journal, April 2015


Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry
journal, February 2016

  • Ophus, Colin; Ciston, Jim; Pierce, Jordan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10719

Split-illumination electron holography
journal, July 2012

  • Tanigaki, Toshiaki; Inada, Yoshikatsu; Aizawa, Shinji
  • Applied Physics Letters, Vol. 101, Issue 4
  • DOI: 10.1063/1.4737152

Amplitude division electron interferometry
journal, January 1981


Detection limits in quantitative off-axis electron holography
journal, August 1993


Aberration corrected STEM by means of diffraction gratings
journal, November 2017


Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film
journal, June 2018


An Electron Interferometer
journal, November 1954

  • Marton, L.; Simpson, J. Arol; Suddeth, J. A.
  • Review of Scientific Instruments, Vol. 25, Issue 11
  • DOI: 10.1063/1.1770945

Efficient diffractive phase optics for electrons
journal, September 2014


Low-dose cryo electron ptychography via non-convex Bayesian optimization
journal, August 2017


STEM-holography using the electron biprism
journal, November 1989

  • Leuthner, Th.; Lichte, H.; Herrmann, K. -H.
  • Physica Status Solidi (a), Vol. 116, Issue 1
  • DOI: 10.1002/pssa.2211160111

Experimental tests on double-resolution coherent imaging via STEM
journal, March 1993


Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution
journal, February 2015

  • Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki
  • Applied Physics Letters, Vol. 106, Issue 7
  • DOI: 10.1063/1.4908175

The principle of a double crystal electron interferometer
journal, September 2001


High resolution side-band holography with a STEM instrument
journal, December 1990


Differential phase-contrast dark-field electron holography for strain mapping
journal, January 2016


Production and application of electron vortex beams
journal, September 2010

  • Verbeeck, J.; Tian, H.; Schattschneider, P.
  • Nature, Vol. 467, Issue 7313
  • DOI: 10.1038/nature09366

Electron Vortex Beams with High Quanta of Orbital Angular Momentum
journal, January 2011

  • McMorran, B. J.; Agrawal, A.; Anderson, I. M.
  • Science, Vol. 331, Issue 6014, p. 192-195
  • DOI: 10.1126/science.1198804

Nanoscale holographic interferometry for strain measurements in electronic devices
journal, June 2008

  • Hÿtch, Martin; Houdellier, Florent; Hüe, Florian
  • Nature, Vol. 453, Issue 7198
  • DOI: 10.1038/nature07049

Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography
journal, June 2014

  • Cooper, David; Pan, Cheng-Ta; Haigh, Sarah
  • Journal of Applied Physics, Vol. 115, Issue 23
  • DOI: 10.1063/1.4883192

Electron Beam Interferometer
journal, May 1953


Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector
journal, December 2017

  • Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji
  • Microscopy, Vol. 67, Issue 1
  • DOI: 10.1093/jmicro/dfx122

Works referencing / citing this record:

A tunable path-separated electron interferometer with an amplitude-dividing grating beamsplitter
journal, December 2018

  • Yasin, Fehmi S.; Harada, Ken; Shindo, Daisuke
  • Applied Physics Letters, Vol. 113, Issue 23
  • DOI: 10.1063/1.5051380

Laser phase plate for transmission electron microscopy
journal, September 2019


Electrons see the light
journal, September 2019


Nanostructured-membrane electron phase plates
text, January 2020


Multibeam Electron Diffraction
text, January 2020