DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers

Abstract

A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ~5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nagg) and the micellar radius (Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ~1/3 and ~3/10 for the respective singly and triply charged series. On the other hand, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ~1/10 and ~1/20more » for the respective singly and triply charged series. Moreover, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers through controlling the sequence and position of the ionic monomer.« less

Authors:
 [1]; ORCiD logo [1];  [2]; ORCiD logo [2];  [1]; ORCiD logo [1]
  1. Louisiana State Univ., Baton Rouge, LA (United States)
  2. Tulane Univ., New Orleans, LA (United States)
Publication Date:
Research Org.:
Louisiana State Univ., Baton Rouge, LA (United States); Univ. of California, Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1510666
Grant/Contract Number:  
SC0012432; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 11; Related Information: Supporting information for the manuscript; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Sequence-defined polymers; ionic peptoid block copolymers; solution self-assembly; electrostatic interactions

Citation Formats

Sternhagen, Garrett L., Gupta, Sudipta, Zhang, Yueheng, John, Vijay, Schneider, Gerald J., and Zhang, Donghui. Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers. United States: N. p., 2018. Web. doi:10.1021/jacs.8b00461.
Sternhagen, Garrett L., Gupta, Sudipta, Zhang, Yueheng, John, Vijay, Schneider, Gerald J., & Zhang, Donghui. Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers. United States. https://doi.org/10.1021/jacs.8b00461
Sternhagen, Garrett L., Gupta, Sudipta, Zhang, Yueheng, John, Vijay, Schneider, Gerald J., and Zhang, Donghui. Mon . "Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers". United States. https://doi.org/10.1021/jacs.8b00461. https://www.osti.gov/servlets/purl/1510666.
@article{osti_1510666,
title = {Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers},
author = {Sternhagen, Garrett L. and Gupta, Sudipta and Zhang, Yueheng and John, Vijay and Schneider, Gerald J. and Zhang, Donghui},
abstractNote = {A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ~5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nagg) and the micellar radius (Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ~1/3 and ~3/10 for the respective singly and triply charged series. On the other hand, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ~1/10 and ~1/20 for the respective singly and triply charged series. Moreover, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers through controlling the sequence and position of the ionic monomer.},
doi = {10.1021/jacs.8b00461},
journal = {Journal of the American Chemical Society},
number = 11,
volume = 140,
place = {United States},
year = {Mon Mar 05 00:00:00 EST 2018},
month = {Mon Mar 05 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 56 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (A) Chemical structures of representative sequences of ionic peptoid block copolymers (1 or 6) and (B) the sequence library showing the singly charged (1-5), triply charged series (6-8) and the charge-neutral sequence (9).

Save / Share:

Works referenced in this record:

Highly Charged Proteins: The Achilles' Heel of Aging Proteomes
journal, February 2016


Structure of Polyelectrolyte Block Copolymer Micelles
journal, May 2002

  • Förster, Stephan; Hermsdorf, Nadja; Böttcher, Christoph
  • Macromolecules, Vol. 35, Issue 10
  • DOI: 10.1021/ma011565y

Aqueous Micellar Solutions of Hydrophobically Modified Polyelectrolytes
journal, January 1996

  • Guenoun, Patrick; Davis, H. Ted; Tirrell, Matthew
  • Macromolecules, Vol. 29, Issue 11
  • DOI: 10.1021/ma946438z

Micellization in Block Polyelectrolyte Solutions. 3. Static Light Scattering Characterization
journal, October 1995

  • Khougaz, Karine; Astafieva, Irina; Eisenberg, Adi
  • Macromolecules, Vol. 28, Issue 21
  • DOI: 10.1021/ma00125a016

pH- and Ionic-Strength-Induced Contraction of Polybasic Micelles in Buffered Aqueous Solutions
journal, April 2015


Structure of pH-Dependent Block Copolymer Micelles:  Charge and Ionic Strength Dependence
journal, October 2002

  • Lee, Albert S.; Bütün, Vural; Vamvakaki, M.
  • Macromolecules, Vol. 35, Issue 22
  • DOI: 10.1021/ma0114842

Rodlike Behavior of Polyelectrolyte Brushes
journal, November 1998


Scaling Relations and Coronal Dimensions in Aqueous Block Polyelectrolyte Micelles
journal, August 1995

  • Zhang, Lifeng; Barlow, Raymond J.; Eisenberg, Adi
  • Macromolecules, Vol. 28, Issue 18
  • DOI: 10.1021/ma00122a010

Micellization of Ionic Block Copolymers
journal, January 1996

  • Moffitt, Matthew; Khougaz, Karine; Eisenberg, Adi
  • Accounts of Chemical Research, Vol. 29, Issue 2
  • DOI: 10.1021/ar940080

Theory of Block Polymer Micelles: Recent Advances and Current Challenges
journal, May 2012

  • Zhulina, E. B.; Borisov, O. V.
  • Macromolecules, Vol. 45, Issue 11
  • DOI: 10.1021/ma300195n

Effects of ionic strength and charge annealing in star-branched polyelectrolytes
journal, August 1998

  • Borisov, O. V.; Zhulina, E. B.
  • The European Physical Journal B, Vol. 4, Issue 2
  • DOI: 10.1007/s100510050371

Tuning the aggregation behavior of pH-responsive micelles by copolymerization
journal, January 2015

  • Wright, Daniel B.; Patterson, Joseph P.; Pitto-Barry, Anaïs
  • Polymer Chemistry, Vol. 6, Issue 14
  • DOI: 10.1039/C4PY01782J

Self-assembly of an amphiphilic diblock copolymer in aqueous solutions: Effect of linear charge density of an ionogenic block
journal, June 2010

  • Kulebyakina, A. I.; Lysenko, E. A.; Chelushkin, P. S.
  • Polymer Science Series A, Vol. 52, Issue 6
  • DOI: 10.1134/S0965545X10060027

Polymer Micelles with Hydrophobic Core and Ionic Amphiphilic Corona. 2. Starlike Distribution of Charged and Nonpolar Blocks in Corona
journal, August 2012

  • Lysenko, Evgeny A.; Kulebyakina, Alevtina I.; Chelushkin, Pavel S.
  • Langmuir, Vol. 28, Issue 34
  • DOI: 10.1021/la302606a

Self-assembly of amphiphilic peptides
journal, January 2011


Structural properties of soluble peptide amphiphile micelles
journal, January 2011

  • Trent, Amanda; Marullo, Rachel; Lin, Brian
  • Soft Matter, Vol. 7, Issue 20
  • DOI: 10.1039/c1sm05862b

Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering
journal, December 2015


Polypeptoid Materials: Current Status and Future Perspectives
journal, May 2012

  • Zhang, Donghui; Lahasky, Samuel H.; Guo, Li
  • Macromolecules, Vol. 45, Issue 15
  • DOI: 10.1021/ma202319g

Sequence Programmable Peptoid Polymers for Diverse Materials Applications
journal, April 2015

  • Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201500275

Peptoid Polymers: A Highly Designable Bioinspired Material
journal, May 2013


Polypeptoids: a model system to study the effect of monomer sequence on polymer properties and self-assembly
journal, January 2013

  • Rosales, Adrianne M.; Segalman, Rachel A.; Zuckermann, Ronald N.
  • Soft Matter, Vol. 9, Issue 35
  • DOI: 10.1039/c3sm51421h

Self-Assembly of Amphiphilic Block Copolypeptoids with C 2 -C 5 Side Chains in Aqueous Solution
journal, December 2014

  • Fetsch, Corinna; Flecks, Silvana; Gieseler, Dan
  • Macromolecular Chemistry and Physics, Vol. 216, Issue 5
  • DOI: 10.1002/macp.201400534

Self-Assembly of Amphiphilic Block Copolypeptoids – Micelles, Worms and Polymersomes
journal, September 2016

  • Fetsch, Corinna; Gaitzsch, Jens; Messager, Lea
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33491

Impact of Hydrophobic Sequence Patterning on the Coil-to-Globule Transition of Protein-like Polymers
journal, June 2012

  • Murnen, Hannah K.; Khokhlov, Alexei R.; Khalatur, Pavel G.
  • Macromolecules, Vol. 45, Issue 12
  • DOI: 10.1021/ma300707t

Shaken, Not Stirred: Collapsing a Peptoid Monolayer To Produce Free-Floating, Stable Nanosheets
journal, December 2011

  • Sanii, Babak; Kudirka, Romas; Cho, Andrew
  • Journal of the American Chemical Society, Vol. 133, Issue 51
  • DOI: 10.1021/ja206199d

Peptoid nanosheets exhibit a new secondary-structure motif
journal, October 2015

  • Mannige, Ranjan V.; Haxton, Thomas K.; Proulx, Caroline
  • Nature, Vol. 526, Issue 7573
  • DOI: 10.1038/nature15363

Design, Synthesis, Assembly, and Engineering of Peptoid Nanosheets
journal, January 2016

  • Robertson, Ellen J.; Battigelli, Alessia; Proulx, Caroline
  • Accounts of Chemical Research, Vol. 49, Issue 3
  • DOI: 10.1021/acs.accounts.5b00439

Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
journal, March 2016

  • Sun, Jing; Jiang, Xi; Lund, Reidar
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 15
  • DOI: 10.1073/pnas.1517169113

Morphology Study of Phosphonated Peptoid Block Copolymer
journal, July 2016


Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers
journal, April 2016


Nanoscale Phase Separation in Sequence-Defined Peptoid Diblock Copolymers
journal, September 2013

  • Sun, Jing; Teran, Alexander A.; Liao, Xunxun
  • Journal of the American Chemical Society, Vol. 135, Issue 38
  • DOI: 10.1021/ja404233d

[25] Synthesis of N-substituted glycine peptoid libraries
book, January 1996


Fluorescence probes for critical micelle concentration determination
journal, May 1985


Reversible Changes in Solution pH Resulting from Changes in Thermoresponsive Polymer Solubility
journal, April 2012

  • Yang, Yanfei; Mijalis, Alexander J.; Fu, Hui
  • Journal of the American Chemical Society, Vol. 134, Issue 17
  • DOI: 10.1021/ja211315e

Dynamic phase diagram of soft nanocolloids
journal, January 2015

  • Gupta, Sudipta; Camargo, Manuel; Stellbrink, Jörg
  • Nanoscale, Vol. 7, Issue 33
  • DOI: 10.1039/C5NR03702F

pH and ionic strength responsive polyelectrolyte block copolymer micelles prepared by ring opening metathesis polymerization
journal, January 2009

  • Stubenrauch, Kurt; Voets, Ilja; Fritz‐Popovski, Gerhard
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 47, Issue 4
  • DOI: 10.1002/pola.23229

Electrostatics in the self-assembly of macromolecular surfactants
journal, December 1997


Dynamic light scattering from spherical particles
journal, August 1983

  • Kunz, D.; Thurn, Angelika; Burchard, W.
  • Colloid & Polymer Science, Vol. 261, Issue 8
  • DOI: 10.1007/BF01415033

Viscosimetric, Hydrodynamic, and Conformational Properties of Dendrimers and Dendrons
journal, November 2001

  • Tande, Brian M.; Wagner, Norman J.; Mackay, Michael E.
  • Macromolecules, Vol. 34, Issue 24
  • DOI: 10.1021/ma011265g

Tuning Cationic Block Copolymer Micelle Size by pH and Ionic Strength
journal, August 2016


Monitoring the Internal Structure of Poly( N -vinylcaprolactam) Microgels with Variable Cross-Link Concentration
journal, December 2014

  • Schneider, Florian; Balaceanu, Andreea; Feoktystov, Artem
  • Langmuir, Vol. 30, Issue 50
  • DOI: 10.1021/la503830w

Role of Interfacial Tension for the Structure of PEP−PEO Polymeric Micelles. A Combined SANS and Pendant Drop Tensiometry Investigation
journal, December 2004

  • Lund, Reidar; Willner, Lutz; Stellbrink, Jörg
  • Macromolecules, Vol. 37, Issue 26
  • DOI: 10.1021/ma035633n

Charged Star Diblock Copolymers in Dilute Solutions: Synthesis, Structure, and Chain Conformations
journal, April 2015

  • Bekhradnia, Sara; Diget, Jakob Stensgaard; Zinn, Thomas
  • Macromolecules, Vol. 48, Issue 8
  • DOI: 10.1021/ma502488u

Studying the concentration dependence of the aggregation number of a micellar model system by SANS
journal, January 2015

  • Amann, Matthias; Willner, Lutz; Stellbrink, Jörg
  • Soft Matter, Vol. 11, Issue 21
  • DOI: 10.1039/C5SM00469A

Works referencing / citing this record:

Recent advances in crystallization and self‐assembly of polypeptoid polymers
journal, June 2019

  • Zeng, Guangjian; Qiu, Lu; Wen, Tao
  • POLYMER CRYSTALLIZATION, Vol. 2, Issue 3
  • DOI: 10.1002/pcr2.10065

A versatile strategy for the synthesis of sequence-defined peptoids with side-chain and backbone diversity via amino acid building blocks
journal, January 2019

  • Wang, Shixue; Tao, Yue; Wang, Jianqun
  • Chemical Science, Vol. 10, Issue 5
  • DOI: 10.1039/c8sc03415j

Influence factors on the critical micelle concentration determination using pyrene as a probe and a simple method of preparing samples
journal, March 2020

  • Li, Hao; Hu, Danna; Liang, Feiqing
  • Royal Society Open Science, Vol. 7, Issue 3
  • DOI: 10.1098/rsos.192092

Linking two worlds in polymer chemistry: The influence of block uniformity and dispersity in amphiphilic block copolypeptoids on their self‐assembly
journal, February 2019

  • Gangloff, Niklas; Höferth, Marcel; Stepanenko, Vladimir
  • Biopolymers, Vol. 110, Issue 4
  • DOI: 10.1002/bip.23259

Design and preparation of organic nanomaterials using self‐assembled peptoids
journal, February 2019