DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evidence for Cyclical Fractional Crystallization, Recharge, and Assimilation in Basalts of the Kimama Drill Core, Central Snake River Plain, Idaho: 5.5-Million-Years of Petrogenesis in a Mid-crustal Sill Complex

Abstract

Basalts erupted in the Snake River Plain of central Idaho and sampled in the Kimama drill core link eruptive processes to the construction of mafic intrusions over 5.5 Ma. Cyclic variations in basalt composition reveal temporal chemical heterogeneity related to fractional crystallization and the assimilation of previously-intruded mafic sills. A range of compositional types are identified within 1,912 m of continuous drill core: Snake River olivine tholeiite (SROT), low K SROT, high Fe-Ti, and evolved and high K-Fe lavas similar to those erupted at Craters of the Moon National Monument. Detailed lithologic and geophysical logs document 432 flow units comprising 183 distinct lava flows and 78 flow groups. Each lava flow represents a single eruptive episode, while flow groups document chemically and temporally related flows that formed over extended periods of time. Temporal chemical variation demonstrates the importance of source heterogeneity and magma processing in basalt petrogenesis. Low-K SROT and high Fe-Ti basalts are genetically related to SROT as, respectively, hydrothermally-altered and fractionated daughters. Cyclic variations in the chemical composition of Kimama flow groups are apparent as 21 upward fractionation cycles, six recharge cycles, eight recharge-fractionation cycles, and five fractionation-recharge cycles. We propose that most Kimama basalt flows represent typicalmore » fractionation and recharge patterns, consistent with the repeated influx of primitive SROT parental magmas and extensive fractional crystallization coupled with varying degrees of assimilation of gabbroic to ferrodioritic sills at shallow to intermediate depths over short durations. Trace element models show that parental SROT basalts were generated by 5–10% partial melting of enriched mantle at shallow depths above the garnet-spinel lherzolite transition. The distinctive evolved and high K-Fe lavas are rare. Found at four depths, 319, 1045, 1,078, and 1,189 m, evolved and high K-Fe flows are compositionally unrelated to SROT magmas and represent highly fractionated basalt, probably accompanied by crustal assimilation. These evolved lavas may be sourced from the Craters of the Moon/Great Rift system to the northeast. The Kimama drill core is the longest record of geochemical variation in the central Snake River Plain and reinforces the concept of magma processing in a layered complex.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Utah State Univ., Logan, UT (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1421565
Alternate Identifier(s):
OSTI ID: 1510440
Grant/Contract Number:  
EE0002848; EE0006733
Resource Type:
Published Article
Journal Name:
Frontiers in Earth Science
Additional Journal Information:
Journal Name: Frontiers in Earth Science Journal Volume: 6; Journal ID: ISSN 2296-6463
Publisher:
Frontiers Research Foundation
Country of Publication:
Switzerland
Language:
English
Subject:
58 GEOSCIENCES; snake river plain; mid-crustal sill complex; olivine tholeiite; craters of the moon; kimama drill core; yellowstone-snake river plain hotspot

Citation Formats

Potter, Katherine E., Shervais, John W., Christiansen, Eric H., and Vetter, Scott K. Evidence for Cyclical Fractional Crystallization, Recharge, and Assimilation in Basalts of the Kimama Drill Core, Central Snake River Plain, Idaho: 5.5-Million-Years of Petrogenesis in a Mid-crustal Sill Complex. Switzerland: N. p., 2018. Web. doi:10.3389/feart.2018.00010.
Potter, Katherine E., Shervais, John W., Christiansen, Eric H., & Vetter, Scott K. Evidence for Cyclical Fractional Crystallization, Recharge, and Assimilation in Basalts of the Kimama Drill Core, Central Snake River Plain, Idaho: 5.5-Million-Years of Petrogenesis in a Mid-crustal Sill Complex. Switzerland. https://doi.org/10.3389/feart.2018.00010
Potter, Katherine E., Shervais, John W., Christiansen, Eric H., and Vetter, Scott K. Fri . "Evidence for Cyclical Fractional Crystallization, Recharge, and Assimilation in Basalts of the Kimama Drill Core, Central Snake River Plain, Idaho: 5.5-Million-Years of Petrogenesis in a Mid-crustal Sill Complex". Switzerland. https://doi.org/10.3389/feart.2018.00010.
@article{osti_1421565,
title = {Evidence for Cyclical Fractional Crystallization, Recharge, and Assimilation in Basalts of the Kimama Drill Core, Central Snake River Plain, Idaho: 5.5-Million-Years of Petrogenesis in a Mid-crustal Sill Complex},
author = {Potter, Katherine E. and Shervais, John W. and Christiansen, Eric H. and Vetter, Scott K.},
abstractNote = {Basalts erupted in the Snake River Plain of central Idaho and sampled in the Kimama drill core link eruptive processes to the construction of mafic intrusions over 5.5 Ma. Cyclic variations in basalt composition reveal temporal chemical heterogeneity related to fractional crystallization and the assimilation of previously-intruded mafic sills. A range of compositional types are identified within 1,912 m of continuous drill core: Snake River olivine tholeiite (SROT), low K SROT, high Fe-Ti, and evolved and high K-Fe lavas similar to those erupted at Craters of the Moon National Monument. Detailed lithologic and geophysical logs document 432 flow units comprising 183 distinct lava flows and 78 flow groups. Each lava flow represents a single eruptive episode, while flow groups document chemically and temporally related flows that formed over extended periods of time. Temporal chemical variation demonstrates the importance of source heterogeneity and magma processing in basalt petrogenesis. Low-K SROT and high Fe-Ti basalts are genetically related to SROT as, respectively, hydrothermally-altered and fractionated daughters. Cyclic variations in the chemical composition of Kimama flow groups are apparent as 21 upward fractionation cycles, six recharge cycles, eight recharge-fractionation cycles, and five fractionation-recharge cycles. We propose that most Kimama basalt flows represent typical fractionation and recharge patterns, consistent with the repeated influx of primitive SROT parental magmas and extensive fractional crystallization coupled with varying degrees of assimilation of gabbroic to ferrodioritic sills at shallow to intermediate depths over short durations. Trace element models show that parental SROT basalts were generated by 5–10% partial melting of enriched mantle at shallow depths above the garnet-spinel lherzolite transition. The distinctive evolved and high K-Fe lavas are rare. Found at four depths, 319, 1045, 1,078, and 1,189 m, evolved and high K-Fe flows are compositionally unrelated to SROT magmas and represent highly fractionated basalt, probably accompanied by crustal assimilation. These evolved lavas may be sourced from the Craters of the Moon/Great Rift system to the northeast. The Kimama drill core is the longest record of geochemical variation in the central Snake River Plain and reinforces the concept of magma processing in a layered complex.},
doi = {10.3389/feart.2018.00010},
journal = {Frontiers in Earth Science},
number = ,
volume = 6,
place = {Switzerland},
year = {Fri Feb 16 00:00:00 EST 2018},
month = {Fri Feb 16 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.3389/feart.2018.00010

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain
journal, June 2007

  • Bonnichsen, Bill; Leeman, William P.; Honjo, Norio
  • Bulletin of Volcanology, Vol. 70, Issue 3
  • DOI: 10.1007/s00445-007-0141-6

The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones
journal, December 2005


Yellowstone hotspot–continental lithosphere interaction
journal, March 2014

  • Jean, Marlon M.; Hanan, Barry B.; Shervais, John W.
  • Earth and Planetary Science Letters, Vol. 389
  • DOI: 10.1016/j.epsl.2013.12.012

Neogene tephra correlations in eastern Idaho and Wyoming: Implications for Yellowstone hotspot-related volcanism and tectonic activity
journal, April 2009

  • Anders, M. H.; Saltzman, J.; Hemming, S. R.
  • Geological Society of America Bulletin, Vol. 121, Issue 5-6
  • DOI: 10.1130/B26300.1

The composition of the Earth
journal, March 1995


Effect of an 860-m thick, cold, freshwater aquifer on geothermal potential along the axis of the eastern Snake River Plain, Idaho
journal, December 2017

  • Lachmar, Thomas E.; Freeman, Thomas G.; Sant, Christopher J.
  • Geothermal Energy, Vol. 5, Issue 1
  • DOI: 10.1186/s40517-017-0086-8

Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States
journal, June 2007


Drilling the solid earth: global geodynamic cycles and earth evolution
journal, October 2014

  • Shervais, John W.; Arndt, Nicholas; Goodenough, Kathryn M.
  • International Journal of Earth Sciences, Vol. 104, Issue 6
  • DOI: 10.1007/s00531-014-1073-y

The volcanic–plutonic connection as a stage for understanding crustal magmatism
journal, November 2007


Yellowstone plume–continental lithosphere interaction beneath the Snake River Plain
journal, January 2008

  • Hanan, Barry B.; Shervais, John W.; Vetter, Scott K.
  • Geology, Vol. 36, Issue 1
  • DOI: 10.1130/G23935A.1

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Jean, Marlon</span> </li> <li> Geosphere, Vol. 9, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/GES00914.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/GES00914.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1130/GES01454.1" target="_blank" rel="noopener noreferrer" class="name">Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-07-17">July 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Henry, Christopher D.; Castor, Stephen B.; Starkel, William A.</span> </li> <li> Geosphere, Vol. 13, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/GES01454.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/GES01454.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1130/G32692.1" target="_blank" rel="noopener noreferrer" class="name">Initial impingement of the Yellowstone plume located by widespread silicic volcanism contemporaneous with Columbia River flood basalts<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-07-01">July 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Coble, Matthew A.; Mahood, Gail A.</span> </li> <li> Geology, Vol. 40, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/G32692.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/G32692.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1130/G22226.1" target="_blank" rel="noopener noreferrer" class="name">Layered mafic sill complex beneath the eastern Snake River Plain: Evidence from cyclic geochemical variations in basalt<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shervais, John W.; Vetter, Scott K.; Hanan, Barry B.</span> </li> <li> Geology, Vol. 34, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/G22226.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/G22226.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0009-2541(90)90145-W" target="_blank" rel="noopener noreferrer" class="name">ICP-MS — A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1990-06-01">June 1990</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Jenner, G. A.; Longerich, H. P.; Jackson, S. E.</span> </li> <li> Chemical Geology, Vol. 83, Issue 1-2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0009-2541(90)90145-W" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0009-2541(90)90145-W<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/92JB00209" target="_blank" rel="noopener noreferrer" class="name">Continental basalts of the Boise River Group near Smith Prairie, Idaho<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1992-01-01">January 1992</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Vetter, Scott K.; Shervais, John W.</span> </li> <li> Journal of Geophysical Research, Vol. 97, Issue B6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/92JB00209" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/92JB00209<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00445-007-0146-1" target="_blank" rel="noopener noreferrer" class="name">Can crystallization of olivine tholeiite give rise to potassic rhyolites?—an experimental investigation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-06-20">June 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Whitaker, Matthew L.; Nekvasil, Hanna; Lindsley, Donald H.</span> </li> <li> Bulletin of Volcanology, Vol. 70, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00445-007-0146-1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00445-007-0146-1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jvolgeores.2009.01.023" target="_blank" rel="noopener noreferrer" class="name">High-K alkali basalts of the Western Snake River Plain (Idaho): Abrupt transition from tholeiitic to mildly alkaline plume-derived basalts<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-11-01">November 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shervais, John W.; Vetter, Scott K.</span> </li> <li> Journal of Volcanology and Geothermal Research, Vol. 188, Issue 1-3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jvolgeores.2009.01.023" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jvolgeores.2009.01.023<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/340199a0" target="_blank" rel="noopener noreferrer" class="name">Geochemical consequences of in situ crystallization<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1989-07-01">July 1989</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Langmuir, Charles H.</span> </li> <li> Nature, Vol. 340, Issue 6230</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/340199a0" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/340199a0<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.lithos.2015.05.008" target="_blank" rel="noopener noreferrer" class="name">Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-08-01">August 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Annen, Catherine; Blundy, Jonathan D.; Leuthold, Julien</span> </li> <li> Lithos, Vol. 230</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.lithos.2015.05.008" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.lithos.2015.05.008<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jvolgeores.2009.06.004" target="_blank" rel="noopener noreferrer" class="name">Mixing primitive and evolved olivine tholeiite magmas in the Eastern Snake River Plain, Idaho<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-11-01">November 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Miller, Myles L.; Hughes, Scott S.</span> </li> <li> Journal of Volcanology and Geothermal Research, Vol. 188, Issue 1-3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jvolgeores.2009.06.004" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jvolgeores.2009.06.004<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.epsl.2013.08.007" target="_blank" rel="noopener noreferrer" class="name">Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-11-01">November 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.</span> </li> <li> Earth and Planetary Science Letters, Vol. 381</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.epsl.2013.08.007" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.epsl.2013.08.007<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/JB087iB04p02705" target="_blank" rel="noopener noreferrer" class="name">The Snake River Plain, Idaho: Representative of a new category of volcanism<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1982-01-01">January 1982</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Greeley, Ronald</span> </li> <li> Journal of Geophysical Research, Vol. 87, Issue B4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/JB087iB04p02705" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/JB087iB04p02705<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/JB089iB10p08801" target="_blank" rel="noopener noreferrer" class="name">The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1984-01-01">January 1984</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Lipman, Peter W.</span> </li> <li> Journal of Geophysical Research, Vol. 89, Issue B10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/JB089iB10p08801" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/JB089iB10p08801<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/2007JB005109" target="_blank" rel="noopener noreferrer" class="name">Crust and upper mantle velocity structure of the Yellowstone hot spot and surroundings<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-01-01">January 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Schutt, Derek L.; Dueker, Ken; Yuan, Huaiyu</span> </li> <li> Journal of Geophysical Research, Vol. 113, Issue B3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/2007JB005109" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/2007JB005109<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jvolgeores.2009.04.001" target="_blank" rel="noopener noreferrer" class="name">Mass transfer along the Yellowstone hotspot track I: Petrologic constraints on the volume of mantle-derived magma<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-11-01">November 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> McCurry, Michael; Rodgers, David W.</span> </li> <li> Journal of Volcanology and Geothermal Research, Vol. 188, Issue 1-3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jvolgeores.2009.04.001" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jvolgeores.2009.04.001<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1093/petrology/egl063" target="_blank" rel="noopener noreferrer" class="name">The Role of Pressure in Producing Compositional Diversity in Intraplate Basaltic Magmas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-11-13">November 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Whitaker, M. L.; Nekvasil, H.; Lindsley, D. H.</span> </li> <li> Journal of Petrology, Vol. 48, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1093/petrology/egl063" class="text-muted" target="_blank" rel="noopener noreferrer">10.1093/petrology/egl063<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jvolgeores.2009.08.020" target="_blank" rel="noopener noreferrer" class="name">Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-11-01">November 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Smith, Robert B.; Jordan, Michael; Steinberger, Bernhard</span> </li> <li> Journal of Volcanology and Geothermal Research, Vol. 188, Issue 1-3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jvolgeores.2009.08.020" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jvolgeores.2009.08.020<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1093/petrology/egl062" target="_blank" rel="noopener noreferrer" class="name">The Graveyard Point Intrusion: an Example of Extreme Differentiation of Snake River Plain Basalt in a Shallow Crustal Pluton<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-11-08">November 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> White, Craig M.</span> </li> <li> Journal of Petrology, Vol. 48, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1093/petrology/egl062" class="text-muted" target="_blank" rel="noopener noreferrer">10.1093/petrology/egl062<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2" target="_blank" rel="noopener noreferrer" class="name">Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1994-03-01">March 1994</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hon, Ken; Kauahikaua, Jim; Denlinger, Roger</span> </li> <li> Geological Society of America Bulletin, Vol. 106, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/0016-7606(1994)106<0351:EAIOPS>2.3.CO;2<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.5194/sd-15-36-2013" target="_blank" rel="noopener noreferrer" class="name">First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shervais, J. W.; Schmitt, D. R.; Nielson, D.</span> </li> <li> Scientific Drilling, Vol. 15</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.5194/sd-15-36-2013" class="text-muted" target="_blank" rel="noopener noreferrer">10.5194/sd-15-36-2013<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1017/S0263593300001127" target="_blank" rel="noopener noreferrer" class="name">Volcanic–plutonic links, plutons as magma chambers and crust–mantle interaction: a lithospheric scale view of magma systems<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-03-01">March 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Metcalf, Rodney V.</span> </li> <li> Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Vol. 95, Issue 1-2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1017/S0263593300001127" class="text-muted" target="_blank" rel="noopener noreferrer">10.1017/S0263593300001127<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1146/annurev.earth.26.1.81" target="_blank" rel="noopener noreferrer" class="name">The Importance of PĀHoehoe<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1998-05-01">May 1998</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Self, S.; Keszthelyi, L.; Thordarson, Th.</span> </li> <li> Annual Review of Earth and Planetary Sciences, Vol. 26, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1146/annurev.earth.26.1.81" class="text-muted" target="_blank" rel="noopener noreferrer">10.1146/annurev.earth.26.1.81<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.lithos.2016.05.016" target="_blank" rel="noopener noreferrer" class="name">Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-09-01">September 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.</span> </li> <li> Lithos, Vol. 260</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.lithos.2016.05.016" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.lithos.2016.05.016<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/2000JE001386" target="_blank" rel="noopener noreferrer" class="name">Interior of the Moon: The presence of garnet in the primitive deep lunar mantle<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-11-01">November 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Neal, Clive R.</span> </li> <li> Journal of Geophysical Research: Planets, Vol. 106, Issue E11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/2000JE001386" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/2000JE001386<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/science.aag3055" target="_blank" rel="noopener noreferrer" class="name">Vertically extensive and unstable magmatic systems: A unified view of igneous processes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-03-23">March 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cashman, Katharine V.; Sparks, R. Stephen J.; Blundy, Jonathan D.</span> </li> <li> Science, Vol. 355, Issue 6331</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/science.aag3055" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/science.aag3055<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0012-821X(02)00929-9" target="_blank" rel="noopener noreferrer" class="name">Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-11-01">November 2002</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Annen, C.; Sparks, R. S. J.</span> </li> <li> Earth and Planetary Science Letters, Vol. 203, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0012-821X(02)00929-9" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0012-821X(02)00929-9<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/2010GL043489" target="_blank" rel="noopener noreferrer" class="name">Slab-plume interaction beneath the Pacific Northwest: WESTERN U.S. SEISMIC TOMOGRAPHY<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-07-01">July 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Obrebski, Mathias; Allen, Richard M.; Xue, Mei</span> </li> <li> Geophysical Research Letters, Vol. 37, Issue 14</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/2010GL043489" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/2010GL043489<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (43)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1613267-volcanic-stratigraphy-age-model-kimama-deep-borehole-project-hotspot-evidence-million-years-continuous-basalt-volcanism-central-snake-river-plain-idaho" itemprop="url">Volcanic stratigraphy and age model of the Kimama deep borehole (Project Hotspot): Evidence for 5.8 million years of continuous basalt volcanism, central Snake River Plain, Idaho</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Potter, Katherine E.</span> ; <span class="author">Champion, Duane E.</span> ; <span class="author">Duncan, Robert A.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Geosphere</span> </span> </div> <div class="abstract">The Snake River Plain of central Idaho represents the world’s best example of a mantle hotspot track impinging upon continental crust and provides a record of bimodal volcanism extending over 12 Ma to the present. Project Hotspot recovered almost 2 km of continuous drill core from the Kimama borehole, located in central Idaho on the axial volcanic zone. The Kimama drill core represents the most complete record of mafic volcanism along the Yellowstone–Snake River Plain hotspot track.A total of 432 basalt flow units, representing 183 basalt flows, 78 basalt flow groups, and 34 super groups, along with 42 sediment interbeds<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> are recognized using volcanic facies observations, stratigraphic relationships, borehole geophysical logs, and paleosecular variation in magnetostratigraphy. Rhyolite and other non-basaltic volcanic materials were not encountered in the drill core.Ages for six basalt lava flows were determined by <sup>40</sup>Ar/<sup>39</sup>Ar using incremental heating experiments. Paleomagnetic inclination was measured on over 1200 samples collected at roughly 2-m-depth intervals, yielding mean values of paleosecular variation between ±50° to ±70° in Kimama flow groups, close to the expected 61° axial dipole average for the Kimama borehole location. Twenty-three magnetic reversals were identified and correlated to dated geomagnetic chrons and subchrons and compared with the <sup>40</sup>Ar/<sup>39</sup>Ar radiometric ages. A linear fit to <sup>40</sup>Ar/<sup>39</sup>Ar dates, geomagnetic chron and subchron boundaries, and volcanogenic zircon U-Pb ages defines a mean accumulation rate of ~320 m/m.y. and extrapolates to a bottom hole age of 6.3 Ma.Average thicknesses of lithologic units increase from 2.7 m (sediment), 4 m (flow units), 10 m (flows), 23 m (flow groups), to 53 m (super groups). On average, one lava flow inundated the Kimama borehole location every 33 k.y. Intercalated sediments, ranging from 0.06 to 24.5 m thick, make up roughly 6% of the drill core and indicate lulls in local volcanic activity that may have lasted up to 77 k.y. Neutron and gamma-ray logs supplement observations from the drill cores: neutron logs document individual flow units through the contrast between massive flow interiors and more porous flow surfaces, and gamma-ray logs document the depth and thickness of sedimentary interbeds and high–K-Fe basalts. The 5.8 m.y. duration of basaltic volcanism in the Kimama drill core implies a steady rate of volcanism, indicating a relatively stable rate of mantle upflow along the lithosphere-mantle boundary in the wake of Yellowstone–Snake River Plain plume volcanism.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 3<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1130/ges01679.1" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1613267" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1130/ges01679.1</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1613267" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1613267" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/70697-chemical-evolution-periodic-eruption-mafic-lava-flows-west-moat-long-valley-caldera-california" itemprop="url">Chemical evolution and periodic eruption of mafic lava flows in the west moat of Long Valley Caldera, California</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Vogel, T A</span> ; <span class="author">Woodburne, T B</span> ; <span class="author">Eichelberger, J C</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Geophysical Research</span> </span> </div> <div class="abstract">Continuous core from research drill hole Inyo-4 through a thick 300 m thick sequence of mafic lava flows in the west moat of the Long Valley Caldera has provided an unusual opportunity to investigate the chemical evolution of this exceptionally complete record of postcaldera mafic magmatism. Lavas are mainly basalts and trachyandesites ranging from 48 to 58% SiO{sub 2} having a nearly fourfold range in MgO contents. The lavas fall into five distinct chemical groups with little or no compositional overlap. These groups correlate remarkably well with stratigraphic position, and they define a trend toward more evolved compositions with time.<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> The groups appear to represent periodic eruptions from a continuously evolving magma body. Preliminary {sup 40}Ar/{sup 39}Ar dates indicate that these lavas erupted over a span of at least 0.264 m.y. between 0.415 Ma and 0.151 Ma. Except for the most evolved group, the chemical variation within a group was dominated by crystal fractionation. Except from the least evolved groups, the chemical contrasts between adjacent groups were dominated by assimilation. Warming the crustal environmental facilitated increasing assimilation. A zoned lava flow (more mafic upward) followed by a mafic flow in an otherwise progressively evolved sequence of flows provides evidence for eruption from a zoned magma reservoir. Deeper, more mafic portions of this zoned magma body were drawn up to shallower levels in the chamber during a period of high eruption rates. The heterogeneity of mafic clasts in the vent breccia dike beneath the 600-year-old South Inyo phreatic explosion crater indicates that these breccia clasts dropped > 300 m down the vent from the overlying lava sequence during waning stages of the phreatic activity, rather than forming by brecciation of an older feeder dike, as previously proposed. 39 refs., 13 figs., 5 tabs.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1029/94JB00897" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="70697" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1029/94JB00897</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/60606-petrology-geochemistry-hawaiite-lavas-from-crater-flat-nevada" itemprop="url">Petrology and geochemistry of Hawaiite lavas from Crater Flat, Nevada</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Vaniman, D T</span> ; <span class="author">Crowe, B M</span> ; <span class="author">Gladney, E S</span> <span class="text-muted pubdata"> - Contributions to Mineralogy and Petrology</span> </span> </div> <div class="abstract">Hawaiite-type lavas were erupted in three cycles (3.7, 1.2, and 0.3 M.y.) at Crater Flat, Nevada. The compositions of all three cycles, considered together, form a "straddling" alkalic series as defined by Miyashiro, in which the less evolved basalts plot near the normative olivine-diopside divide and the more evolved basalts project into hypersthene or nepheline fields. Fractionation modeling based on the oldest cycle allows the removal of olivine, clinopyroxene, and amphibole to arrive at the more evolved hawaiite compositions. In general, fractionation of phlogopite or feldspar is limited by the fractionation modeling and by Eu/REE relations. In detail, all hawaiites<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> within one cycle (3.7 M.y.) need not be derived from a single parent magma. Varied parentage is more evident between cycles although all cycles are consistently of hawaiite composition. Basalts of the youngest two cycles are generally enriched in trace elements. Superimposed on this enrichment is a lack of Rb variation, leading to Rb/Sr ratios far lower than required to generate the high {sup 87}Sr/{sup 86}Sr ratio (0.707) typical of basalts in this region. The very low Rb/Sr ratios limit processes that may lead to trace-element enrichment during magma evolution (cyclic recharge of a fractionating magma chamber). Decreased fractions of mantle melting leaving phlogopite in the residuum or an earlier event of metasomatic transport from phlogopite-bearing mantle rocks into a phlogopite-absent mantle assemblage might explain the observed trace-element enrichment with low Rb/Sr.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1007/BF00378007" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="60606" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1007/BF00378007</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1479295-volatiles-tempo-flood-basalt-magmatism" itemprop="url">Volatiles and the tempo of flood basalt magmatism</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Black, Benjamin A.</span> ; <span class="author">Manga, Michael</span> <span class="text-muted pubdata"> - Earth and Planetary Science Letters</span> </span> </div> <div class="abstract">We report that individual flood basalt lavas often exceed 10<sup>3</sup> km<sup>3</sup> in volume, and many such lavas erupt during emplacement of flood basalt provinces. The large volume of individual flood basalt lavas implies correspondingly large magma reservoirs within or at the base of the crust. To erupt, some fraction of this magma must become buoyant and overpressure must be sufficient to encourage failure and dike propagation. The overpressure associated with a new injection of magma is inversely proportional to the total reservoir volume, and as a large magma body heats the surrounding rocks thermally activated creep will relax isotropic overpressure<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> more rapidly. Here, we examine the viability of buoyancy overpressure as a trigger for continental flood basalt eruptions. We employ a new one-dimensional model that combines volatile exsolution, bubble growth and rise, assimilation, and permeable fluid escape from Moho-depth and crustal chambers. We investigate the temporal evolution of degassing and the eruptibility of magmas using the Siberian Traps flood basalts as a test case. We suggest that the volatile inventory set during mantle melting and redistributed via bubble motion controls ascent of magma into and through the crust, thereby regulating the tempo of flood basalt magmatism. Volatile-rich melts from low degrees of partial melting of the mantle are buoyant and erupt to the surface with little staging or crustal interaction. Melts with moderate volatile budgets accumulate in large, mostly molten magma chambers at the Moho or in the lower crust. These large magma bodies may remain buoyant and poised to erupt—triggered by volatile-rich recharge or external stresses—for ~10<sup>6</sup> yr. If and when such chambers fail, enormous volumes of magma can ascend into the upper crust, staging at shallow levels and initiating substantial assimilation that contributes to pulses of large-volume flood basalt eruption. Our model further predicts that the Siberian Traps may have released 1019–1020g of CO<sub>2</sub> during a number of brief (~10<sup>4</sup> yr) pulses, providing a plausible trigger for warming and ocean acidification during the end-Permian mass extinction. The assimilation of carbon-rich crustal rocks strongly enhances both flood basalt eruptibility and CO<sub>2</sub> release, and the tempo of eruptions influences the environmental effects of CO<sub>2</sub>, SO<sub>2</sub>, and halogen degassing. The eruptive dynamics of flood basalts are thus inextricably linked with their environmental consequences.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1016/j.epsl.2016.09.035" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1479295" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1016/j.epsl.2016.09.035</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1479295" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1479295" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="5" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/59123-geology-petrology-basalts-crater-flat-applications-volcanic-risk-assessment-nevada-nuclear-waste-storage-investigations" itemprop="url">Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Vaniman, D</span> ; <span class="author">Crowe, B</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>