Reactions at noble metal contacts with methylammonium lead triiodide perovskites: Role of underpotential deposition and electrochemistry
- Princeton Univ., NJ (United States). Dept. of Electrical Engineering
- National Renewable Energy Lab. (NREL), Golden, CO (United States); CNRS Ile-de-France Photovoltaic Inst. (IPVF), Palaiseau (France)
- National Renewable Energy Lab. (NREL), Golden, CO (United States); Hope College, Holland, MI (United States). Dept. of Engineering
- National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States). Materials Science and Engineering Program. Renewable and Sustainable Energy Inst.
- National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States). Dept. of Electrical, Computer, and Energy Engineering
- National Renewable Energy Lab. (NREL), Golden, CO (United States)
- Princeton Univ., NJ (United States). Dept. of Electrical Engineering. Andlinger Center for Energy and the Environment
Chemical reactivity of halide perovskites coupled with a low energy of formation makes it a challenge to characterize material properties and achieve long-term device stability. In this study, we elucidate electrochemical reactions occurring at the methylammonium lead triiodide (MAPbI3)/Au interface. X-ray photoemission spectroscopy is used to identify a type of reduction/oxidation reaction termed underpotential deposition (UPD) involving lead, iodine, and hydrogen occurring at interfaces with noble metals. Changes in surface compositions and oxidation states suggest that UPD derived adsorbates at MAPbI3/Au interfaces lower the energy barrier for release of volatile HI and/or I2 catalyzing degradation at exposed contacts. Additionally, comparison to PbI2/Au interfaces demonstrates that the presence of methylammonium/methylamine accelerates the formation of a Pb0 adlayer on the Au. Reactions involving UPD Pb0 can transform the typically anodic (hole collecting) Au to a cathode in a photovoltaic measurement. Cyclic voltammetry reveals electrochemical reaction peaks in indium tin oxide (ITO)/MAPbI3/Au devices occurring within voltage ranges commonly used for perovskite characterization. The electrochemical stability window of this device architecture is measured to be between -0.5 V and 0.9 V. Voltage induced interfacial reactions contribute to reversible electrochemical peaks, hysteresis, switchable perovskite diode polarity, and permanent degradation at larger voltages. These types of surface reactions alter the interface/interphase composition beyond ion accumulation, provide a source for the diffusion of defects, and contribute to electrode material dependent current-voltage hysteresis. Moreover, the results imply fundamental limitations to achieving high device stability with noble metals and/or methylammonium containing perovskites.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO (United States); Princeton Univ., NJ (United States); CNRS Ile-de-France Photovoltaic Inst. (IPVF), Palaiseau (France)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; Office of Naval Research (ONR) (United States); National Research Agency (ANR) (France)
- Grant/Contract Number:
- AC36-08GO28308; N00014-17-1-2005; ANR-17-MPGA-0012; SC00014664
- OSTI ID:
- 1510426
- Alternate ID(s):
- OSTI ID: 1504999
- Report Number(s):
- NREL/JA-5K00-73840
- Journal Information:
- APL Materials, Vol. 7, Issue 4; ISSN 2166-532X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Orientation of Ferroelectric Domains and Disappearance upon Heating Methylammonium Lead Triiodide Perovskite from Tetragonal to Cubic Phase
Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells