skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 5, 2020

Title: The impact of alkyl tri-methyl ammonium side chains on perfluorinated ionic membranes for electrochemical applications

Abstract

Three different perfluorinated type polymers as anion exchange membranes for electrochemical applications were studied. They have a sulfonamide linkage to a spacer methylene chain attached to a tri-methyl ammonium cation, specifically using a three carbon spacer chain (PFAEM_H_C3), and methylated imide polymers with three (PFAEM_CH3_C3) and six carbon spacer chain (PFAEM_CH3_C6). There are significant number of zwitterionic side chains in the PFAEM_H_C3 polymer and very few in the PFAEM_CH3_C3 or the PFAEM_CH3_C6 polymer. They have similar halide conductivity, but the PFAEM_CH3_C6 showed highest OH - conductivity, 122 mS cm -1 at 80 degrees C and 95% RH. The larger spacer chain polymer, PFAEM_CH3_C6 has a higher water uptake value (..lambda..= 9) compared to PFAEM_CH3_C3(λ=°7) at 60 degrees C and 95% RH in the Cl - form. Therefore, it has a larger domain spacing of 4.9 nm versus 4.1 nm from small angle X-ray scattering data. The polymer was characterized by FTIR and DFT was used to fully assign the spectra.

Authors:
 [1];  [1];  [2];  [1];  [1];  [2]; ORCiD logo [2];  [3];  [4];  [5];  [1];  [2];  [1]
  1. Colorado School of Mines, Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Colorado School of Mines, Golden, CO (United States); Proctor & Gamble, Cincinatti, OH (United States)
  5. 3M Company, St. Paul, MN (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE-3F)
OSTI Identifier:
1510424
Alternate Identifier(s):
OSTI ID: 1505641; OSTI ID: 1558101
Report Number(s):
NREL/JA-5900-73836
Journal ID: ISSN 0887-6266
Grant/Contract Number:  
AC36-08GO28308; AC02‐06CH11357; AC36‐08GO28308; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Polymer Science. Part B, Polymer Physics
Additional Journal Information:
Journal Volume: 57; Journal Issue: 11; Journal ID: ISSN 0887-6266
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; anion exchange membranes; electrochemical applications; electrochemistry; fuel cells; perfluorinated AEMs; polyelectrolytes; polytetrafluoroethylene

Citation Formats

Divekar, Ashutosh G., Kuo, Mei-Chen, Park, Andrew M., Motz, Andrew R., Page-Belknap, Zachary S., Owczarczyk, Zbyslaw, Long, Hai, Seifert, Soenke, Maupin, Christopher Mark, Yandrasits, Michael A., Yang, Yuan, Pivovar, Bryan S., and Herring, Andrew M. The impact of alkyl tri-methyl ammonium side chains on perfluorinated ionic membranes for electrochemical applications. United States: N. p., 2019. Web. doi:10.1002/polb.24825.
Divekar, Ashutosh G., Kuo, Mei-Chen, Park, Andrew M., Motz, Andrew R., Page-Belknap, Zachary S., Owczarczyk, Zbyslaw, Long, Hai, Seifert, Soenke, Maupin, Christopher Mark, Yandrasits, Michael A., Yang, Yuan, Pivovar, Bryan S., & Herring, Andrew M. The impact of alkyl tri-methyl ammonium side chains on perfluorinated ionic membranes for electrochemical applications. United States. doi:10.1002/polb.24825.
Divekar, Ashutosh G., Kuo, Mei-Chen, Park, Andrew M., Motz, Andrew R., Page-Belknap, Zachary S., Owczarczyk, Zbyslaw, Long, Hai, Seifert, Soenke, Maupin, Christopher Mark, Yandrasits, Michael A., Yang, Yuan, Pivovar, Bryan S., and Herring, Andrew M. Fri . "The impact of alkyl tri-methyl ammonium side chains on perfluorinated ionic membranes for electrochemical applications". United States. doi:10.1002/polb.24825.
@article{osti_1510424,
title = {The impact of alkyl tri-methyl ammonium side chains on perfluorinated ionic membranes for electrochemical applications},
author = {Divekar, Ashutosh G. and Kuo, Mei-Chen and Park, Andrew M. and Motz, Andrew R. and Page-Belknap, Zachary S. and Owczarczyk, Zbyslaw and Long, Hai and Seifert, Soenke and Maupin, Christopher Mark and Yandrasits, Michael A. and Yang, Yuan and Pivovar, Bryan S. and Herring, Andrew M.},
abstractNote = {Three different perfluorinated type polymers as anion exchange membranes for electrochemical applications were studied. They have a sulfonamide linkage to a spacer methylene chain attached to a tri-methyl ammonium cation, specifically using a three carbon spacer chain (PFAEM_H_C3), and methylated imide polymers with three (PFAEM_CH3_C3) and six carbon spacer chain (PFAEM_CH3_C6). There are significant number of zwitterionic side chains in the PFAEM_H_C3 polymer and very few in the PFAEM_CH3_C3 or the PFAEM_CH3_C6 polymer. They have similar halide conductivity, but the PFAEM_CH3_C6 showed highest OH- conductivity, 122 mS cm-1 at 80 degrees C and 95% RH. The larger spacer chain polymer, PFAEM_CH3_C6 has a higher water uptake value (..lambda..= 9) compared to PFAEM_CH3_C3(λ=°7) at 60 degrees C and 95% RH in the Cl- form. Therefore, it has a larger domain spacing of 4.9 nm versus 4.1 nm from small angle X-ray scattering data. The polymer was characterized by FTIR and DFT was used to fully assign the spectra.},
doi = {10.1002/polb.24825},
journal = {Journal of Polymer Science. Part B, Polymer Physics},
number = 11,
volume = 57,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 5, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

New Insights into Perfluorinated Sulfonic-Acid Ionomers
journal, January 2017


Hydration of Ionomers and Schroeder’s Paradox in Nafion
journal, January 2009

  • Freger, Viatcheslav
  • The Journal of Physical Chemistry B, Vol. 113, Issue 1
  • DOI: 10.1021/jp806326a

An attempt to generate anion exchange membranes by amination of the perfluorinated 3M precursor leads to the hydrolysis of the precursor
journal, October 2014


Anion exchange membranes derived from nafion precursor for the alkaline fuel cell: Effect of cation type on properties
journal, May 2012

  • Salerno, Holly L. S.; Elabd, Yossef A.
  • Journal of Applied Polymer Science, Vol. 127, Issue 1
  • DOI: 10.1002/app.37874

Resonance Stabilized Perfluorinated Ionomers for Alkaline Membrane Fuel Cells
journal, September 2013

  • Kim, Dae Sik; Fujimoto, Cy H.; Hibbs, Michael R.
  • Macromolecules, Vol. 46, Issue 19, p. 7826-7833
  • DOI: 10.1021/ma401568f

Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids
journal, November 2014


Hydroxide, halide and water transport in a model anion exchange membrane
journal, August 2014


Nitrogen acids. 1. Carboxamides and sulfonamides
journal, July 1976

  • Bordwell, F. G.; Algrim, Donald.
  • The Journal of Organic Chemistry, Vol. 41, Issue 14
  • DOI: 10.1021/jo00876a042

State of Understanding of Nafion
journal, October 2004

  • Mauritz, Kenneth A.; Moore, Robert B.
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr0207123

Anion exchange membranes for alkaline fuel cells: A review
journal, July 2011

  • Merle, Géraldine; Wessling, Matthias; Nijmeijer, Kitty
  • Journal of Membrane Science, Vol. 377, Issue 1-2, p. 1-35
  • DOI: 10.1016/j.memsci.2011.04.043

A Study of Carbonate Formation Kinetics and Morphological Effects Observed on OH - Form of Pfaem When Exposed to Air Containing CO 2
journal, August 2017

  • Divekar, Ashutosh G.; Park, Andrew Michael; Owczarczyk, Zbyslaw R.
  • ECS Transactions, Vol. 80, Issue 8
  • DOI: 10.1149/08008.1005ecst

Synthesis and characterization of perfluoro quaternary ammonium anion exchange membranes
journal, September 2012

  • Vandiver, Melissa A.; Horan, James L.; Yang, Yuan
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 51, Issue 24
  • DOI: 10.1002/polb.23171

Rapid Proton Conduction through Unfreezable and Bound Water in a Wholly Aromatic Pore-Filling Electrolyte Membrane
journal, April 2009

  • Hara, Nobuo; Ohashi, Hidenori; Ito, Taichi
  • The Journal of Physical Chemistry B, Vol. 113, Issue 14
  • DOI: 10.1021/jp810575u

Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity
journal, January 1999

  • Laporta, M.; Pegoraro, M.; Zanderighi, L.
  • Physical Chemistry Chemical Physics, Vol. 1, Issue 19
  • DOI: 10.1039/a904460d

A perfluorinated anion exchange membrane with a 1,4-dimethylpiperazinium cation
journal, January 2011

  • Jung, Min-suk J.; Arges, Christopher G.; Ramani, Vijay
  • Journal of Materials Chemistry, Vol. 21, Issue 17
  • DOI: 10.1039/c1jm10320b

Effect of CO 2 absorption on ion and water mobility in an anion exchange membrane
journal, March 2018


Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane
journal, January 2015

  • Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 6
  • DOI: 10.1039/C4CP05755D

Synthesis and Solution Properties of Zwitterionic Polymers
journal, November 2002

  • Lowe, Andrew B.; McCormick, Charles L.
  • Chemical Reviews, Vol. 102, Issue 11
  • DOI: 10.1021/cr020371t

Synthesis and Characterization of Perfluorinated Anion Exchange Membranes
journal, August 2017

  • Park, Andrew Michael; Owczarczyk, Zbyslaw R.; Garner, L. E.
  • ECS Transactions, Vol. 80, Issue 8
  • DOI: 10.1149/08008.0957ecst

A Small-Angle X-ray Scattering Study of the Development of Morphology in Films Formed from the 3M Perfluorinated Sulfonic Acid Ionomer
journal, September 2012

  • Liu, Yuan; Horan, James L.; Schlichting, Gregory J.
  • Macromolecules, Vol. 45, Issue 18
  • DOI: 10.1021/ma300926e

Polymeric materials as anion-exchange membranes for alkaline fuel cells
journal, November 2011


Applications of zwitterionic polymers
journal, September 2017


Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs)
conference, January 2008

  • Yanagi, Hiroyuki; Fukuta, Kenji
  • 214th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2981860

Anion-exchange membranes in electrochemical energy systems
journal, January 2014

  • Varcoe, John R.; Atanassov, Plamen; Dekel, Dario R.
  • Energy & Environmental Science, Vol. 7, Issue 10, p. 3135-3191
  • DOI: 10.1039/C4EE01303D

A Highly Hydroxide Conductive, Chemically Stable Anion Exchange Membrane, Poly(2,6 dimethyl 1,4 phenylene oxide)- b -Poly(vinyl benzyl trimethyl ammonium), for Electrochemical Applications
journal, January 2016

  • Pandey, Tara P.; Sarode, Himanshu N.; Yang, Yating
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0421607jes

Novel anion exchange membranes having fluorocarbon backbone: Preparation and stability
journal, August 1986

  • Matsui, Kiyohide; Tobita, Etsuko; Sugimoto, Kikuo
  • Journal of Applied Polymer Science, Vol. 32, Issue 3
  • DOI: 10.1002/app.1986.070320327

Applications of proton exchange membrane fuel cell systems
journal, October 2007


Interplay between Structure and Relaxations in Perfluorosulfonic Acid Proton Conducting Membranes
journal, December 2012

  • Giffin, Guinevere A.; Haugen, Gregory M.; Hamrock, Steven J.
  • Journal of the American Chemical Society, Vol. 135, Issue 2
  • DOI: 10.1021/ja3099799

The reaction between Nafion sulfonyl fluoride precursor membrane and 1,4-dimethylpiperazine does not yield reliable anion-exchange membranes
journal, January 2013

  • Hillman, Donna M.; Stephens, Susan H.; Poynton, Simon D.
  • J. Mater. Chem. A, Vol. 1, Issue 4
  • DOI: 10.1039/C2TA00955B

Determination of the Structure of a Novel Anion Exchange Fuel Cell Membrane by Solid-State Nuclear Magnetic Resonance Spectroscopy
journal, March 2009

  • Kong, Xueqian; Wadhwa, Kuldeep; Verkade, John G.
  • Macromolecules, Vol. 42, Issue 5
  • DOI: 10.1021/ma802613k