skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high Q piezoelectric resonator as a portable VLF transmitter

Abstract

Very low frequency communication systems (3 kHz–30 kHz) enable applications not feasible at higher frequencies. However, the highest radiation efficiency antennas require size at the scale of the wavelength (here, >1 km), making portable transmitters extremely challenging. Facilitating transmitters at the 10 cm scale, we demonstrate an ultra-low loss lithium niobate piezoelectric electric dipole driven at acoustic resonance that radiates with greater than 300x higher efficiency compared to the previous state of the art at a comparable electrical size. A piezoelectric radiating element eliminates the need for large impedance matching networks as it self-resonates at the acoustic wavelength. Temporal modulation of this resonance demonstrates a device bandwidth greater than 83x beyond the conventional Bode-Fano limit, thus increasing the transmitter bitrate while still minimizing losses. These results will open new applications for portable, electrically small antennas.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [2];  [3];  [3]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Gooch and Housego, LLC., Highland Heights, OH (United States)
  3. SRI International, Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1510219
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 36 MATERIALS SCIENCE

Citation Formats

Kemp, Mark A., Franzi, Matt, Haase, Andy, Jongewaard, Erik, Whittaker, Matthew T., Kirkpatrick, Michael, and Sparr, Robert. A high Q piezoelectric resonator as a portable VLF transmitter. United States: N. p., 2019. Web. doi:10.1038/s41467-019-09680-2.
Kemp, Mark A., Franzi, Matt, Haase, Andy, Jongewaard, Erik, Whittaker, Matthew T., Kirkpatrick, Michael, & Sparr, Robert. A high Q piezoelectric resonator as a portable VLF transmitter. United States. doi:10.1038/s41467-019-09680-2.
Kemp, Mark A., Franzi, Matt, Haase, Andy, Jongewaard, Erik, Whittaker, Matthew T., Kirkpatrick, Michael, and Sparr, Robert. Fri . "A high Q piezoelectric resonator as a portable VLF transmitter". United States. doi:10.1038/s41467-019-09680-2. https://www.osti.gov/servlets/purl/1510219.
@article{osti_1510219,
title = {A high Q piezoelectric resonator as a portable VLF transmitter},
author = {Kemp, Mark A. and Franzi, Matt and Haase, Andy and Jongewaard, Erik and Whittaker, Matthew T. and Kirkpatrick, Michael and Sparr, Robert},
abstractNote = {Very low frequency communication systems (3 kHz–30 kHz) enable applications not feasible at higher frequencies. However, the highest radiation efficiency antennas require size at the scale of the wavelength (here, >1 km), making portable transmitters extremely challenging. Facilitating transmitters at the 10 cm scale, we demonstrate an ultra-low loss lithium niobate piezoelectric electric dipole driven at acoustic resonance that radiates with greater than 300x higher efficiency compared to the previous state of the art at a comparable electrical size. A piezoelectric radiating element eliminates the need for large impedance matching networks as it self-resonates at the acoustic wavelength. Temporal modulation of this resonance demonstrates a device bandwidth greater than 83x beyond the conventional Bode-Fano limit, thus increasing the transmitter bitrate while still minimizing losses. These results will open new applications for portable, electrically small antennas.},
doi = {10.1038/s41467-019-09680-2},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1 : Illustration of how a piezoelectric resonator can be used as a transmitter. a Schematic of the lithium niobate rod mounting and excitation mechanisms, b Mechanical displacement magnitude (in color, magnitude exaggerated for clarity) and the induced electric displacement vectors (arrows), c Electric potential magnitude in color alongmore » with electric field vectors, d Electrical schematic of input and output measurements, e Simulated input impedance magnitude versus frequency, f Representative simulations of velocity and electric dipole moments versus frequency« less

Save / Share:

Works referenced in this record:

Experimental Validation of Performance Limits and Design Guidelines for Small Antennas
journal, January 2012

  • Sievenpiper, Daniel F.; Dawson, David C.; Jacob, Minu M.
  • IEEE Transactions on Antennas and Propagation, Vol. 60, Issue 1
  • DOI: 10.1109/TAP.2011.2167938

Switched Antenna Circuit With Increased Information Bandwidth
journal, January 2010

  • Keller, Steven D.; Palmer, W. Devereux; Joines, William T.
  • IEEE Antennas and Wireless Propagation Letters, Vol. 9
  • DOI: 10.1109/LAWP.2010.2089775

Electromagnetic radiation from doubly rotated piezoelectric crystal plates vibrating at thickness frequencies
journal, June 1990

  • Lee, P. C. Y.; Kim, Y‐G.; Prevost, J. H.
  • Journal of Applied Physics, Vol. 67, Issue 11
  • DOI: 10.1063/1.345096

Acoustically actuated ultra-compact NEMS magnetoelectric antennas
journal, August 2017


Bulk Acoustic Wave-Mediated Multiferroic Antennas: Architecture and Performance Bound
journal, August 2015

  • Yao, Zhi; Wang, Yuanxun Ethan; Keller, Scott
  • IEEE Transactions on Antennas and Propagation, Vol. 63, Issue 8
  • DOI: 10.1109/TAP.2015.2431723

Theoretical limitations on the broadband matching of arbitrary impedances
journal, January 1950


Physical Limitations of Omni‐Directional Antennas
journal, December 1948

  • Chu, L. J.
  • Journal of Applied Physics, Vol. 19, Issue 12, p. 1163-1175
  • DOI: 10.1063/1.1715038

On the lower bound of the radiation Q for electrically small antennas
journal, June 2003

  • Thiele, G. A.; Detweiler, P. L.; Penno, R. P.
  • IEEE Transactions on Antennas and Propagation, Vol. 51, Issue 6
  • DOI: 10.1109/TAP.2003.812254

High-Speed Frequency-Shift Keying of LF and VLF Radio Circuits
journal, December 1957


Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators
journal, September 2016

  • Peng, Liang; Chen, Peiwei; Wu, Aiting
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33501

Gain and Noise Performance of Non-Foster Matching Circuit for vlf Receiver loop Antenna
journal, January 2018

  • Yan, Ya-Long; Liu, Chao; Dong, Yin-Hui
  • Progress In Electromagnetics Research M, Vol. 67
  • DOI: 10.2528/PIERM18020904

A Wideband Electrically Small Transient-State Antenna
journal, April 2016


Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks
journal, September 2001

  • Ballato, A.
  • IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, Issue 5
  • DOI: 10.1109/58.949732

Non-Foster Impedance Matching of Electrically-Small Antennas
journal, August 2009

  • Sussman-Fort, S. E.; Rudish, R. M.
  • IEEE Transactions on Antennas and Propagation, Vol. 57, Issue 8
  • DOI: 10.1109/TAP.2009.2024494

Fundamental Efficiency Limits for Small Metallic Antennas
journal, April 2017


Strain powered antennas
journal, January 2017

  • Domann, John P.; Carman, Greg P.
  • Journal of Applied Physics, Vol. 121, Issue 4
  • DOI: 10.1063/1.4975030

Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting
journal, October 2018

  • Assimonis, Stylianos D.; Fusco, Vincent; Georgiadis, Apostolos
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-33388-w

Frequency dependence of electromagnetic radiation from a finite vibrating piezoelectric body
journal, October 2018


Two-dimensional quasi-optical power-combining arrays using strongly coupled oscillators
journal, April 1994

  • Lin, J.; Itoh, T.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 42, Issue 4
  • DOI: 10.1109/22.285088

Electromagnetic radiation from a vibrating quartz plate
journal, June 1973


Communication in the Presence of Noise
journal, January 1949


A re-examination of the fundamental limits on the radiation Q of electrically small antennas
journal, May 1996

  • McLean, J. S.
  • IEEE Transactions on Antennas and Propagation, Vol. 44, Issue 5
  • DOI: 10.1109/8.496253

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.