skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing transport in quantum many-fermion simulations via quantum loop topography

Authors:
; ; ; ;
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1509924
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Name: Physical Review B Journal Volume: 99 Journal Issue: 16; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Zhang, Yi, Bauer, Carsten, Broecker, Peter, Trebst, Simon, and Kim, Eun-Ah. Probing transport in quantum many-fermion simulations via quantum loop topography. United States: N. p., 2019. Web. doi:10.1103/PhysRevB.99.161120.
Zhang, Yi, Bauer, Carsten, Broecker, Peter, Trebst, Simon, & Kim, Eun-Ah. Probing transport in quantum many-fermion simulations via quantum loop topography. United States. doi:10.1103/PhysRevB.99.161120.
Zhang, Yi, Bauer, Carsten, Broecker, Peter, Trebst, Simon, and Kim, Eun-Ah. Tue . "Probing transport in quantum many-fermion simulations via quantum loop topography". United States. doi:10.1103/PhysRevB.99.161120.
@article{osti_1509924,
title = {Probing transport in quantum many-fermion simulations via quantum loop topography},
author = {Zhang, Yi and Bauer, Carsten and Broecker, Peter and Trebst, Simon and Kim, Eun-Ah},
abstractNote = {},
doi = {10.1103/PhysRevB.99.161120},
journal = {Physical Review B},
number = 16,
volume = 99,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevB.99.161120

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum critical phenomena
journal, August 1976


Quantum Entanglement in Neural Network States
journal, May 2017


Spin liquids in frustrated magnets
journal, March 2010


Sign-Problem-Free Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals
journal, December 2012


Quantum critical properties of a metallic spin-density-wave transition
journal, January 2017


Monte Carlo Studies of Quantum Critical Metals
journal, March 2019


What makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study
journal, June 2016


Sign problem in the numerical simulation of many-electron systems
journal, May 1990


Machine learning of quantum phase transitions
journal, March 2019


Helicity modulus in the two-dimensional Hubbard model
journal, March 1993

  • Denteneer, P. J. H.; An, Guozhong; van Leeuwen, J. M. J.
  • Physical Review B, Vol. 47, Issue 11
  • DOI: 10.1103/PhysRevB.47.6256

Machine learning quantum phases of matter beyond the fermion sign problem
journal, August 2017


Two-dimensional negative- U Hubbard model
journal, February 1991


Efficient representation of quantum many-body states with deep neural networks
journal, September 2017


Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions
journal, April 2017

  • Ohtsuki, Tomi; Ohtsuki, Tomoki
  • Journal of the Physical Society of Japan, Vol. 86, Issue 4
  • DOI: 10.7566/JPSJ.86.044708

Machine learning Z 2 quantum spin liquids with quasiparticle statistics
journal, December 2017


Machine learning vortices at the Kosterlitz-Thouless transition
journal, January 2018


Machine Learning Phases of Strongly Correlated Fermions
journal, August 2017


Supervised learning approach for recognizing magnetic skyrmion phases
journal, November 2018


Stable monte carlo algorithm for fermion lattice systems at low temperatures
journal, December 1988


Neural-Network Quantum States, String-Bond States, and Chiral Topological States
journal, January 2018


Probing many-body localization with neural networks
journal, June 2017


Machine learning of frustrated classical spin models. I. Principal component analysis
journal, October 2017


Discovering phase transitions with unsupervised learning
journal, November 2016


Ordering, metastability and phase transitions in two-dimensional systems
journal, April 1973

  • Kosterlitz, J M; Thouless, D J
  • Journal of Physics C: Solid State Physics, Vol. 6, Issue 7, p. 1181-1203
  • DOI: 10.1088/0022-3719/6/7/010

Machine learning topological states
journal, November 2017


Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
journal, December 2016

  • Ohtsuki, Tomoki; Ohtsuki, Tomi
  • Journal of the Physical Society of Japan, Vol. 85, Issue 12
  • DOI: 10.7566/JPSJ.85.123706

Competing Orders in a Nearly Antiferromagnetic Metal
journal, August 2016


Insulator, metal, or superconductor: The criteria
journal, April 1993

  • Scalapino, Douglas J.; White, Steven R.; Zhang, Shoucheng
  • Physical Review B, Vol. 47, Issue 13
  • DOI: 10.1103/PhysRevB.47.7995

Superfluid density and the Drude weight of the Hubbard model
journal, May 1992


Quantum Loop Topography for Machine Learning
journal, May 2017


Effect of a nonzero temperature on quantum critical points in itinerant fermion systems
journal, September 1993


Phase diagram of the two-dimensional negative- U Hubbard model
journal, March 1989


Learning phase transitions by confusion
journal, February 2017

  • van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4037

Introduction to quantum Monte Carlo simulations for fermionic systems
journal, January 2003


Solving the quantum many-body problem with artificial neural networks
journal, February 2017


Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Neural-network quantum state tomography
journal, February 2018


Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point
journal, April 2017

  • Lederer, Samuel; Schattner, Yoni; Berg, Erez
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 19
  • DOI: 10.1073/pnas.1620651114