skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 29, 2019

Title: Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans -cyclooctene derivatives

Abstract

Alkaline anion exchange membranes (AAEMs) are an important component of alkaline exchange membrane fuel cells (AEMFCs), which facilitate the efficient conversion of fuels to electricity using nonplatinum electrode catalysts. However, low hydroxide conductivity and poor long-term alkaline stability of AAEMs are the major limitations for the widespread application of AEMFCs. In this paper, we report the synthesis of highly conductive and chemically stable AAEMs from the living polymerization of trans -cyclooctenes. A trans -cyclooctene–fused imidazolium monomer was designed and synthesized on gram scale. Using these highly ring-strained monomers, we produced a range of block and random copolymers. Surprisingly, AAEMs made from the random copolymer exhibited much higher conductivities than their block copolymer analogs. Investigation by transmission electron microscopy showed that the block copolymers had a disordered microphase segregation which likely impeded ion conduction. A cross-linked random copolymer demonstrated a high level of hydroxide conductivity (134 mS/cm at 80 °C). More importantly, the membranes exhibited excellent chemical stability due to the incorporation of highly alkaline-stable multisubstituted imidazolium cations. No chemical degradation was detected by 1 H NMR spectroscopy when the polymers were treated with 2 M KOH in CD 3 OH at 80 °C for 30 d.

Authors:
; ; ; ; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1509916
Grant/Contract Number:  
SC0019445
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

You, Wei, Padgett, Elliot, MacMillan, Samantha N., Muller, David A., and Coates, Geoffrey W. Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans -cyclooctene derivatives. United States: N. p., 2019. Web. doi:10.1073/pnas.1900988116.
You, Wei, Padgett, Elliot, MacMillan, Samantha N., Muller, David A., & Coates, Geoffrey W. Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans -cyclooctene derivatives. United States. doi:10.1073/pnas.1900988116.
You, Wei, Padgett, Elliot, MacMillan, Samantha N., Muller, David A., and Coates, Geoffrey W. Mon . "Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans -cyclooctene derivatives". United States. doi:10.1073/pnas.1900988116.
@article{osti_1509916,
title = {Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans -cyclooctene derivatives},
author = {You, Wei and Padgett, Elliot and MacMillan, Samantha N. and Muller, David A. and Coates, Geoffrey W.},
abstractNote = {Alkaline anion exchange membranes (AAEMs) are an important component of alkaline exchange membrane fuel cells (AEMFCs), which facilitate the efficient conversion of fuels to electricity using nonplatinum electrode catalysts. However, low hydroxide conductivity and poor long-term alkaline stability of AAEMs are the major limitations for the widespread application of AEMFCs. In this paper, we report the synthesis of highly conductive and chemically stable AAEMs from the living polymerization of trans -cyclooctenes. A trans -cyclooctene–fused imidazolium monomer was designed and synthesized on gram scale. Using these highly ring-strained monomers, we produced a range of block and random copolymers. Surprisingly, AAEMs made from the random copolymer exhibited much higher conductivities than their block copolymer analogs. Investigation by transmission electron microscopy showed that the block copolymers had a disordered microphase segregation which likely impeded ion conduction. A cross-linked random copolymer demonstrated a high level of hydroxide conductivity (134 mS/cm at 80 °C). More importantly, the membranes exhibited excellent chemical stability due to the incorporation of highly alkaline-stable multisubstituted imidazolium cations. No chemical degradation was detected by 1 H NMR spectroscopy when the polymers were treated with 2 M KOH in CD 3 OH at 80 °C for 30 d.},
doi = {10.1073/pnas.1900988116},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 29, 2019
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel�Cells
journal, October 2004


Anion-exchange membranes in electrochemical energy systems
journal, January 2014

  • Varcoe, John R.; Atanassov, Plamen; Dekel, Dario R.
  • Energy & Environmental Science, Vol. 7, Issue 10, p. 3135-3191
  • DOI: 10.1039/C4EE01303D

A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange Membrane Fuel Cells
journal, August 2009

  • Gu, Shuang; Cai, Rui; Luo, Ting
  • Angewandte Chemie International Edition, Vol. 48, Issue 35, p. 6499-6502
  • DOI: 10.1002/anie.200806299

Anion exchange membranes for alkaline fuel cells: A review
journal, July 2011

  • Merle, G�raldine; Wessling, Matthias; Nijmeijer, Kitty
  • Journal of Membrane Science, Vol. 377, Issue 1-2, p. 1-35
  • DOI: 10.1016/j.memsci.2011.04.043

Anion Conductive Block Poly(arylene ether)s: Synthesis, Properties, and Application in Alkaline Fuel Cells
journal, July 2011

  • Tanaka, Manabu; Fukasawa, Keita; Nishino, Eriko
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10646-10654
  • DOI: 10.1021/ja204166e

Anion Transport in a Chemically Stable, Sterically Bulky ?-C Modified Imidazolium Functionalized Anion Exchange Membrane
journal, July 2014

  • Liu, Ye; Wang, Junhua; Yang, Yuan
  • The Journal of Physical Chemistry C, Vol. 118, Issue 28, p. 15136-15145
  • DOI: 10.1021/jp5027674

Alkaline Stable C2-Substituted Imidazolium-Based Anion-Exchange Membranes
journal, April 2013

  • Lin, Bencai; Dong, Huilong; Li, Youyong
  • Chemistry of Materials, Vol. 25, Issue 9, p. 1858-1867
  • DOI: 10.1021/cm400468u

Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts
journal, December 2008

  • Lu, S.; Pan, J.; Huang, A.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 52, p. 20611-20614
  • DOI: 10.1073/pnas.0810041106