DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12

Abstract

Abstract Sulfide‐based superionic conductors with high ionic conductivity have been explored as candidates for solid‐state Li batteries. However, moisture hypersensitivity has made their manufacture complicated and costly and also impeded applications in batteries. Now, a sulfide‐based superionic conductor Li 4 Cu 8 Ge 3 S 12 with superior stability was developed based on the hard/soft acid–base theory. The compound is stable in both moist air and aqueous LiOH aqueous solution. The electrochemical stability window was up to 1.5 V. An ionic conductivity of 0.9×10 −4  S cm with low activation energy of 0.33 eV was achieved without any optimization. The material features a rigid Cu‐Ge‐S open framework that increases its stability. Meanwhile, the weak bonding between Li + and the framework promotes ionic conductivity. This work provides a structural configuration in which weak Li bonding in the rigid framework promotes an environment for highly conductive and stable solid‐state electrolytes.

Authors:
 [1]; ORCiD logo [1];  [2];  [3];  [3];  [1];  [4];  [5]
  1. Center for High Pressure Science &, Technology Advanced Research Shanghai 206203 P. R. China
  2. Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
  3. Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
  4. State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
  5. State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China, CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1509751
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 131 Journal Issue: 23; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Wang, Yingqi, Lü, Xujie, Zheng, Chong, Liu, Xiang, Chen, Zonghai, Yang, Wenge, Lin, Jianhua, and Huang, Fuqiang. Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12. Germany: N. p., 2019. Web. doi:10.1002/ange.201901739.
Wang, Yingqi, Lü, Xujie, Zheng, Chong, Liu, Xiang, Chen, Zonghai, Yang, Wenge, Lin, Jianhua, & Huang, Fuqiang. Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12. Germany. https://doi.org/10.1002/ange.201901739
Wang, Yingqi, Lü, Xujie, Zheng, Chong, Liu, Xiang, Chen, Zonghai, Yang, Wenge, Lin, Jianhua, and Huang, Fuqiang. Mon . "Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12". Germany. https://doi.org/10.1002/ange.201901739.
@article{osti_1509751,
title = {Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12},
author = {Wang, Yingqi and Lü, Xujie and Zheng, Chong and Liu, Xiang and Chen, Zonghai and Yang, Wenge and Lin, Jianhua and Huang, Fuqiang},
abstractNote = {Abstract Sulfide‐based superionic conductors with high ionic conductivity have been explored as candidates for solid‐state Li batteries. However, moisture hypersensitivity has made their manufacture complicated and costly and also impeded applications in batteries. Now, a sulfide‐based superionic conductor Li 4 Cu 8 Ge 3 S 12 with superior stability was developed based on the hard/soft acid–base theory. The compound is stable in both moist air and aqueous LiOH aqueous solution. The electrochemical stability window was up to 1.5 V. An ionic conductivity of 0.9×10 −4  S cm with low activation energy of 0.33 eV was achieved without any optimization. The material features a rigid Cu‐Ge‐S open framework that increases its stability. Meanwhile, the weak bonding between Li + and the framework promotes ionic conductivity. This work provides a structural configuration in which weak Li bonding in the rigid framework promotes an environment for highly conductive and stable solid‐state electrolytes.},
doi = {10.1002/ange.201901739},
journal = {Angewandte Chemie},
number = 23,
volume = 131,
place = {Germany},
year = {Mon Apr 29 00:00:00 EDT 2019},
month = {Mon Apr 29 00:00:00 EDT 2019}
}

Works referenced in this record:

Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4
journal, October 1982


Crystal structure of a superionic conductor, Li7P3S11
journal, June 2007


A high conductivity oxide–sulfide composite lithium superionic conductor
journal, January 2014

  • Rangasamy, Ezhiylmurugan; Sahu, Gayatri; Keum, Jong Kahk
  • J. Mater. Chem. A, Vol. 2, Issue 12
  • DOI: 10.1039/C3TA15223E

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016

  • Li, Yutao; Xu, Biyi; Xu, Henghui
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201608924

Li-rich antiperovskite superionic conductors based on cluster ions
journal, October 2017

  • Fang, Hong; Jena, Puru
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 42
  • DOI: 10.1073/pnas.1704086114

Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures
journal, August 2015


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

On the Location of Li+ Cations in the Fast Li-Cation Conductor La0.5Li0.5TiO3 Perovskite
journal, February 2000


Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries
journal, June 2016


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Proton Conduction with Metal-Organic Frameworks
journal, July 2013


Exceptional Superionic Conductivity in Disordered Sodium Decahydro- closo -decaborate
journal, October 2014

  • Udovic, Terrence J.; Matsuo, Motoaki; Tang, Wan Si
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403157

Proton-conducting crystalline porous materials
journal, January 2017

  • Meng, Xing; Wang, Hai-Ning; Song, Shu-Yan
  • Chemical Society Reviews, Vol. 46, Issue 2
  • DOI: 10.1039/C6CS00528D

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

High magnesium mobility in ternary spinel chalcogenides
journal, November 2017

  • Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01772-1

On the Location of Li+ Cations in the Fast Li-Cation Conductor La0.5Li0.5TiO3 Perovskite
journal, February 2000


X-ray Crystal Structure Analysis of Sodium-Ion Conductivity in 94 Na 3 PS 4 ⋅6 Na 4 SiS 4 Glass-Ceramic Electrolytes
journal, June 2014

  • Tanibata, Naoto; Noi, Kousuke; Hayashi, Akitoshi
  • ChemElectroChem, Vol. 1, Issue 7
  • DOI: 10.1002/celc.201402016

Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie, Vol. 127, Issue 1
  • DOI: 10.1002/ange.201408124

An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016

  • Wang, Hui; Chen, Yan; Hood, Zachary D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201601546

Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4
journal, January 2014

  • Sahu, Gayatri; Lin, Zhan; Li, Juchuan
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43357A

Hard and soft acids and bases, HSAB, part 1: Fundamental principles
journal, September 1968

  • Pearson, Ralph G.
  • Journal of Chemical Education, Vol. 45, Issue 9
  • DOI: 10.1021/ed045p581

Protonenleitung in Metall-organischen Gerüsten und verwandten modularen porösen Festkörpern
journal, January 2013

  • Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan
  • Angewandte Chemie, Vol. 125, Issue 10
  • DOI: 10.1002/ange.201206410

Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes
journal, January 2018

  • Dawson, James A.; Attari, Tavleen S.; Chen, Hungru
  • Energy & Environmental Science, Vol. 11, Issue 10
  • DOI: 10.1039/C8EE00779A

Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries
journal, June 2016

  • Li, Yutao; Zhou, Weidong; Xin, Sen
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201604554

A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
journal, January 1997

  • Yu, Xiaohua; Bates, J. B.; Jellison, G. E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 2, p. 524-532
  • DOI: 10.1149/1.1837443

Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201408124

Proton conduction in crystalline and porous covalent organic frameworks
journal, April 2016

  • Xu, Hong; Tao, Shanshan; Jiang, Donglin
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4611

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016


Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions
journal, January 2015

  • Tang, Wan Si; Unemoto, Atsushi; Zhou, Wei
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE02941D

Li 3 BO 3 –Li 2 CO 3 : Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries
journal, October 2018


A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage
journal, January 2015

  • Zhao, Yu; Ding, Yu; Li, Yutao
  • Chemical Society Reviews, Vol. 44, Issue 22
  • DOI: 10.1039/C5CS00289C

Antiperovskite Li 3 OCl Superionic Conductor Films for Solid-State Li-Ion Batteries
journal, February 2016


A solid lithium superionic conductor Li 11 AlP 2 S 12 with a thio-LISICON analogous structure
journal, January 2016

  • Zhou, Pengfei; Wang, Jianbin; Cheng, Fangyi
  • Chemical Communications, Vol. 52, Issue 36
  • DOI: 10.1039/C6CC02131J

Na 3 PSe 4 : A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity
journal, October 2015


Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion–Insertion Processes
journal, May 2017


An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Li-rich anti-perovskite Li 3 OCl films with enhanced ionic conductivity
journal, January 2014

  • Lü, Xujie; Wu, Gang; Howard, John W.
  • Chem. Commun., Vol. 50, Issue 78
  • DOI: 10.1039/C4CC05372A

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids
journal, January 2013

  • Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan
  • Angewandte Chemie International Edition, Vol. 52, Issue 10
  • DOI: 10.1002/anie.201206410

Superionic Conductivity in Lithium-Rich Anti-Perovskites
journal, August 2012

  • Zhao, Yusheng; Daemen, Luke L.
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305709z