DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li4Cu8Ge 3S12

Abstract

Sulfide-based superionic conductors with high ionic conductivity have been explored as candidates for solid-state Li batteries. However, moisture hypersensitivity has made their manufacture complicated and costly and also impeded applications in batteries. Now, a sulfide-based superionic conductor Li4Cu8Ge 3S12 with superior stability was developed based on the hard/soft acid–base theory. The compound is stable in both moist air and aqueous LiOH aqueous solution. The electrochemical stability window was up to 1.5 V. An ionic conductivity of 0.9×10-4 S cm with low activation energy of 0.33 eV was achieved without any optimization. The material features a rigid Cu-Ge-S open framework that increases its stability. Meanwhile, the weak bonding between Li+ and the framework promotes ionic conductivity. This work provides a structural configuration in which weak Li bonding in the rigid framework promotes an environment for highly conductive and stable solid-state electrolytes.

Authors:
 [1]; ORCiD logo [1];  [2];  [3];  [4];  [1];  [5];  [6]
  1. Center for High Pressure Science & Technology Advanced Research, Shanghai (China)
  2. Northern Illinois Univ., DeKalb, IL (United States)
  3. Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Peking Univ., Beijing (China). State Key Lab. of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering
  6. Peking Univ., Beijing (China). State Key Lab. of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering; Chinese Academy of Sciences (CAS), Shanghai (China). CAS Key Lab. of Materials for Energy Conversion, Shanghai Inst. of Ceramics
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NSFC); China Scholarship Council; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1515841
Alternate Identifier(s):
OSTI ID: 1509750
Grant/Contract Number:  
AC02-06CH11357; U1530402; Y93GJ11101
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 58; Journal Issue: 23; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chalcogenide framework; crystal engineering; enhanced stability; solid electrolyte; superionic conductor; chalcogenide open framework

Citation Formats

Wang, Yingqi, Lü, Xujie, Zheng, Chong, Liu, Xiang, Chen, Zonghai, Yang, Wenge, Lin, Jianhua, and Huang, Fuqiang. Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li4Cu8Ge 3S12. United States: N. p., 2019. Web. doi:10.1002/anie.201901739.
Wang, Yingqi, Lü, Xujie, Zheng, Chong, Liu, Xiang, Chen, Zonghai, Yang, Wenge, Lin, Jianhua, & Huang, Fuqiang. Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li4Cu8Ge 3S12. United States. https://doi.org/10.1002/anie.201901739
Wang, Yingqi, Lü, Xujie, Zheng, Chong, Liu, Xiang, Chen, Zonghai, Yang, Wenge, Lin, Jianhua, and Huang, Fuqiang. Tue . "Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li4Cu8Ge 3S12". United States. https://doi.org/10.1002/anie.201901739. https://www.osti.gov/servlets/purl/1515841.
@article{osti_1515841,
title = {Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li4Cu8Ge 3S12},
author = {Wang, Yingqi and Lü, Xujie and Zheng, Chong and Liu, Xiang and Chen, Zonghai and Yang, Wenge and Lin, Jianhua and Huang, Fuqiang},
abstractNote = {Sulfide-based superionic conductors with high ionic conductivity have been explored as candidates for solid-state Li batteries. However, moisture hypersensitivity has made their manufacture complicated and costly and also impeded applications in batteries. Now, a sulfide-based superionic conductor Li4Cu8Ge 3S12 with superior stability was developed based on the hard/soft acid–base theory. The compound is stable in both moist air and aqueous LiOH aqueous solution. The electrochemical stability window was up to 1.5 V. An ionic conductivity of 0.9×10-4 S cm with low activation energy of 0.33 eV was achieved without any optimization. The material features a rigid Cu-Ge-S open framework that increases its stability. Meanwhile, the weak bonding between Li+ and the framework promotes ionic conductivity. This work provides a structural configuration in which weak Li bonding in the rigid framework promotes an environment for highly conductive and stable solid-state electrolytes.},
doi = {10.1002/anie.201901739},
journal = {Angewandte Chemie (International Edition)},
number = 23,
volume = 58,
place = {United States},
year = {Tue Apr 02 00:00:00 EDT 2019},
month = {Tue Apr 02 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4
journal, October 1982


Crystal structure of a superionic conductor, Li7P3S11
journal, June 2007


A high conductivity oxide–sulfide composite lithium superionic conductor
journal, January 2014

  • Rangasamy, Ezhiylmurugan; Sahu, Gayatri; Keum, Jong Kahk
  • J. Mater. Chem. A, Vol. 2, Issue 12
  • DOI: 10.1039/C3TA15223E

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016

  • Li, Yutao; Xu, Biyi; Xu, Henghui
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201608924

Li-rich antiperovskite superionic conductors based on cluster ions
journal, October 2017

  • Fang, Hong; Jena, Puru
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 42
  • DOI: 10.1073/pnas.1704086114

Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures
journal, August 2015


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

On the Location of Li+ Cations in the Fast Li-Cation Conductor La0.5Li0.5TiO3 Perovskite
journal, February 2000


Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries
journal, June 2016


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Proton Conduction with Metal-Organic Frameworks
journal, July 2013


Exceptional Superionic Conductivity in Disordered Sodium Decahydro- closo -decaborate
journal, October 2014

  • Udovic, Terrence J.; Matsuo, Motoaki; Tang, Wan Si
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403157

Proton-conducting crystalline porous materials
journal, January 2017

  • Meng, Xing; Wang, Hai-Ning; Song, Shu-Yan
  • Chemical Society Reviews, Vol. 46, Issue 2
  • DOI: 10.1039/C6CS00528D

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

High magnesium mobility in ternary spinel chalcogenides
journal, November 2017

  • Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01772-1

On the Location of Li+ Cations in the Fast Li-Cation Conductor La0.5Li0.5TiO3 Perovskite
journal, February 2000


X-ray Crystal Structure Analysis of Sodium-Ion Conductivity in 94 Na 3 PS 4 ⋅6 Na 4 SiS 4 Glass-Ceramic Electrolytes
journal, June 2014

  • Tanibata, Naoto; Noi, Kousuke; Hayashi, Akitoshi
  • ChemElectroChem, Vol. 1, Issue 7
  • DOI: 10.1002/celc.201402016

Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie, Vol. 127, Issue 1
  • DOI: 10.1002/ange.201408124

An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016

  • Wang, Hui; Chen, Yan; Hood, Zachary D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201601546

Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4
journal, January 2014

  • Sahu, Gayatri; Lin, Zhan; Li, Juchuan
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43357A

Hard and soft acids and bases, HSAB, part 1: Fundamental principles
journal, September 1968

  • Pearson, Ralph G.
  • Journal of Chemical Education, Vol. 45, Issue 9
  • DOI: 10.1021/ed045p581

Protonenleitung in Metall-organischen Gerüsten und verwandten modularen porösen Festkörpern
journal, January 2013

  • Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan
  • Angewandte Chemie, Vol. 125, Issue 10
  • DOI: 10.1002/ange.201206410

Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes
journal, January 2018

  • Dawson, James A.; Attari, Tavleen S.; Chen, Hungru
  • Energy & Environmental Science, Vol. 11, Issue 10
  • DOI: 10.1039/C8EE00779A

Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries
journal, June 2016

  • Li, Yutao; Zhou, Weidong; Xin, Sen
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201604554

A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
journal, January 1997

  • Yu, Xiaohua; Bates, J. B.; Jellison, G. E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 2, p. 524-532
  • DOI: 10.1149/1.1837443

Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions
journal, October 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201408124

Proton conduction in crystalline and porous covalent organic frameworks
journal, April 2016

  • Xu, Hong; Tao, Shanshan; Jiang, Donglin
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4611

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016


Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions
journal, January 2015

  • Tang, Wan Si; Unemoto, Atsushi; Zhou, Wei
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE02941D

Li 3 BO 3 –Li 2 CO 3 : Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries
journal, October 2018


A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage
journal, January 2015

  • Zhao, Yu; Ding, Yu; Li, Yutao
  • Chemical Society Reviews, Vol. 44, Issue 22
  • DOI: 10.1039/C5CS00289C

Antiperovskite Li 3 OCl Superionic Conductor Films for Solid-State Li-Ion Batteries
journal, February 2016


A solid lithium superionic conductor Li 11 AlP 2 S 12 with a thio-LISICON analogous structure
journal, January 2016

  • Zhou, Pengfei; Wang, Jianbin; Cheng, Fangyi
  • Chemical Communications, Vol. 52, Issue 36
  • DOI: 10.1039/C6CC02131J

Na 3 PSe 4 : A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity
journal, October 2015


Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion–Insertion Processes
journal, May 2017


An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Li-rich anti-perovskite Li 3 OCl films with enhanced ionic conductivity
journal, January 2014

  • Lü, Xujie; Wu, Gang; Howard, John W.
  • Chem. Commun., Vol. 50, Issue 78
  • DOI: 10.1039/C4CC05372A

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids
journal, January 2013

  • Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan
  • Angewandte Chemie International Edition, Vol. 52, Issue 10
  • DOI: 10.1002/anie.201206410

Superionic Conductivity in Lithium-Rich Anti-Perovskites
journal, August 2012

  • Zhao, Yusheng; Daemen, Luke L.
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305709z

Proton Conduction with Metal-Organic Frameworks
null, January 2013


Works referencing / citing this record:

Two rare-earth-based quaternary chalcogenides EuCdGeQ 4 (Q = S, Se) with strong second-harmonic generation
journal, January 2019

  • Xing, Wenhao; Wang, Naizheng; Guo, Yangwu
  • Dalton Transactions, Vol. 48, Issue 47
  • DOI: 10.1039/c9dt03755a

Recent Development of Mg Ion Solid Electrolyte
journal, February 2020