Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow
- Michigan Technological Univ., Houghton, MI (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- International Advanced Research Centre for Powder Metallurgy and New Materials (India)
Nanoindentation experiments performed in high-purity vapor deposited lithium films at 31 °C reveal a strain rate and length scale dependence in the stress at which pop-in type events signal an abrupt transition from diffusion to dislocation-mediated flow. The stress level at which the transition to dislocation-mediated flow occurs varies with the strain rate and ranges from 88 to 208 times larger than the nominal yield strength of bulk, polycrystalline lithium. Variation in the indentation strain rate reveals the relationship between the stress required to initiate the transition and the length scale at which the transition occurs follows the power-law relation, hardness × depth1.17 = 1.545 N/m0.83, where the magnitude of the exponent and constant reflect the defect structure of the film. In conclusion, a rationalization of the transition is provided through direct comparisons between the measured cumulative distribution function (CDF) and the CDF hypothesized for the activation of a Frank–Read source.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1509574
- Journal Information:
- Journal of Materials Research, Vol. 33, Issue 10; ISSN 0884-2914
- Publisher:
- Materials Research SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Quantitative insights into the dislocation source behavior of twin boundaries suggest a new dislocation source mechanism
Understanding pop-ins in spherical nanoindentation