skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass

Abstract

Knockdown (KD) expression of GAlactUronosylTransferase 4 ( GAUT4) in switchgrass improves sugar yield and ethanol production from the biomass. The reduced recalcitrance of GAUT4-KD transgenic biomass is associated with reduced cell wall pectic homogalacturonan and rhamnogalacturonan II content and cross-linking, and the associated increases in accessibility of cellulose to enzymatic deconstruction. To further probe the molecular basis for the reduced recalcitrance of GAUT4-KD biomass, potential recalcitrance-related factors including the physicochemical properties of lignin and hemicellulose are investigated. We show that the transgenic switchgrass have a lower abundance of ferulate and lignin-carbohydrate complex cross-linkages, reduced amounts of residual arabinan and xylan in lignin-enriched fractions after enzymatic hydrolysis, and greater coalescence and migration of lignin after hydrothermal pretreatment in comparison to the wild-type switchgrass control. The results reveal the roles of both decreased lignin-polymer and pectin cross-links in the reduction of recalcitrance in PvGAUT4-KD switchgrass.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [4];  [3]; ORCiD logo [5]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); State Univ. of New York College of Environmental Science and Forestry, Syracuse, NY (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Georgia, Athens, GA (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Georgia Inst. of Technology, Atlanta, GA (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory, Oak Ridge Leadership Computing Facility (OLCF); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1509568
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Communications Biology
Additional Journal Information:
Journal Volume: 2; Journal Issue: 1; Journal ID: ISSN 2399-3642
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Li, Mi, Yoo, Chang Geun, Pu, Yunqiao, Biswal, Ajaya K., Tolbert, Allison K., Mohnen, Debra, and Ragauskas, Arthur J. Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. United States: N. p., 2019. Web. doi:10.1038/s42003-018-0265-6.
Li, Mi, Yoo, Chang Geun, Pu, Yunqiao, Biswal, Ajaya K., Tolbert, Allison K., Mohnen, Debra, & Ragauskas, Arthur J. Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. United States. doi:10.1038/s42003-018-0265-6.
Li, Mi, Yoo, Chang Geun, Pu, Yunqiao, Biswal, Ajaya K., Tolbert, Allison K., Mohnen, Debra, and Ragauskas, Arthur J. Thu . "Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass". United States. doi:10.1038/s42003-018-0265-6. https://www.osti.gov/servlets/purl/1509568.
@article{osti_1509568,
title = {Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass},
author = {Li, Mi and Yoo, Chang Geun and Pu, Yunqiao and Biswal, Ajaya K. and Tolbert, Allison K. and Mohnen, Debra and Ragauskas, Arthur J.},
abstractNote = {Knockdown (KD) expression of GAlactUronosylTransferase 4 (GAUT4) in switchgrass improves sugar yield and ethanol production from the biomass. The reduced recalcitrance of GAUT4-KD transgenic biomass is associated with reduced cell wall pectic homogalacturonan and rhamnogalacturonan II content and cross-linking, and the associated increases in accessibility of cellulose to enzymatic deconstruction. To further probe the molecular basis for the reduced recalcitrance of GAUT4-KD biomass, potential recalcitrance-related factors including the physicochemical properties of lignin and hemicellulose are investigated. We show that the transgenic switchgrass have a lower abundance of ferulate and lignin-carbohydrate complex cross-linkages, reduced amounts of residual arabinan and xylan in lignin-enriched fractions after enzymatic hydrolysis, and greater coalescence and migration of lignin after hydrothermal pretreatment in comparison to the wild-type switchgrass control. The results reveal the roles of both decreased lignin-polymer and pectin cross-links in the reduction of recalcitrance in PvGAUT4-KD switchgrass.},
doi = {10.1038/s42003-018-0265-6},
journal = {Communications Biology},
number = 1,
volume = 2,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: The molecular weights and glycosyl residue composition of the hemicellulose fractions from switchgrass. Number-average (Mn) and weight-average (Mw) molecular weights of the alkaline-extracted hemicellulose-enriched fractions isolated from GAUT4-KD (2A, 2B, and 4A) lines and wild-type (WT) control. Ara: arabinose; Rha: rhamnose; Xyl: xylose; GalA: galacturonic acid; Man: mannose;more » Gal: galactose; Glc: glucose. *p value <0.05 and **p value« less

Save / Share:

Works referenced in this record:

NMR Spectroscopic Profiling of Arabinan and Galactan Structural Elements
journal, December 2016

  • Wefers, Daniel; Bunzel, Mirko
  • Journal of Agricultural and Food Chemistry, Vol. 64, Issue 50
  • DOI: 10.1021/acs.jafc.6b04232

Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments
journal, January 2013


Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance
journal, November 2016


Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization
journal, January 2011

  • Pu, Yunqiao; Cao, Shilin; Ragauskas, Arthur J.
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01201k

Unveiling the structure and ultrastructure of lignin carbohydrate complexes in softwoods
journal, November 2013


Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis
journal, February 2018

  • Biswal, Ajaya K.; Atmodjo, Melani A.; Li, Mi
  • Nature Biotechnology, Vol. 36, Issue 3
  • DOI: 10.1038/nbt.4067

Acetyl Bromide Soluble Lignin (ABSL) Assay for Total Lignin Quantification from Plant Biomass
journal, January 2017


Adsorption of Cellulase on Cellulolytic Enzyme Lignin from Lodgepole Pine
journal, September 2009

  • Tu, Maobing; Pan, Xuejun; Saddler, Jack N.
  • Journal of Agricultural and Food Chemistry, Vol. 57, Issue 17
  • DOI: 10.1021/jf901031m

Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production
journal, January 2011

  • DeMartini, Jaclyn D.; Pattathil, Sivakumar; Avci, Utku
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee02112e

Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon
journal, January 2013

  • Molinari, Hugo B. C.; Pellny, Till K.; Freeman, Jackie
  • Frontiers in Plant Science, Vol. 4
  • DOI: 10.3389/fpls.2013.00050

Isolation of Cellulolytic Enzyme Lignin from Wood Preswollen/Dissolved in Dimethyl Sulfoxide/ N -Methylimidazole
journal, March 2010

  • Zhang, Aiping; Lu, Fachuang; Sun, Run-Cang
  • Journal of Agricultural and Food Chemistry, Vol. 58, Issue 6
  • DOI: 10.1021/jf903998d

Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy
journal, February 2011


ORIGINAL RESEARCH: Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification
journal, April 2010

  • Selig, Michael J.; Tucker, Melvin P.; Sykes, Robert W.
  • Industrial Biotechnology, Vol. 6, Issue 2
  • DOI: 10.1089/ind.2010.0009

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

The structure, function, and biosynthesis of plant cell wall pectic polysaccharides
journal, September 2009


Reactions of dehydrodiferulates with ammonia
journal, January 2011

  • Azarpira, Ali; Lu, Fachuang; Ralph, John
  • Organic & Biomolecular Chemistry, Vol. 9, Issue 19
  • DOI: 10.1039/c1ob05677h

The Path Forward for Biofuels and Biomaterials
journal, January 2006

  • Ragauskas, Arthur J.; Williams, Charlotte K.; Davison, Brian H.
  • Science, Vol. 311, Issue 5760, p. 484-489
  • DOI: 10.1126/science.1114736

Studies on the Nature of Lignin - Carbohydrate Bonding
journal, January 1982

  • Meshitsuka, Gyosuke; Lee, Zhung Zhong; Nakano, Junzo
  • Journal of Wood Chemistry and Technology, Vol. 2, Issue 3
  • DOI: 10.1080/02773818208085134

Wood formation of trees in relation to potassium and calcium nutrition
journal, May 2010


Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium
journal, November 2014


p -Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon
journal, February 2014

  • Petrik, Deborah L.; Karlen, Steven D.; Cass, Cynthia L.
  • The Plant Journal, Vol. 77, Issue 5
  • DOI: 10.1111/tpj.12420

Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass
journal, January 2017


Structural Characterization of Wheat Straw Lignin as Revealed by Analytical Pyrolysis, 2D-NMR, and Reductive Cleavage Methods
journal, December 2011

  • del Río, José C.; Rencoret, Jorge; Prinsen, Pepijn
  • Journal of Agricultural and Food Chemistry, Vol. 60, Issue 23
  • DOI: 10.1021/jf301002n

2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins
journal, June 1995

  • Granata, Alessandro; Argyropoulos, Dimitris S.
  • Journal of Agricultural and Food Chemistry, Vol. 43, Issue 6
  • DOI: 10.1021/jf00054a023

Arabidopsis thaliana T-DNA Mutants Implicate GAUT Genes in the Biosynthesis of Pectin and Xylan in Cell Walls and Seed Testa
journal, September 2009

  • Caffall, Kerry H.; Pattathil, Sivakumar; Phillips, Sarah E.
  • Molecular Plant, Vol. 2, Issue 5
  • DOI: 10.1093/mp/ssp062

H 2 SO 4 -Catalyzed Hydrothermal Pretreatment of Triploid Poplar to Enhance Enzymatic Hydrolysis
journal, August 2012

  • Yang, Haiyan; Wang, Kun; Xu, Feng
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 36
  • DOI: 10.1021/ie300895y

Grass Cell Walls: A Story of Cross-Linking
journal, January 2017

  • Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.
  • Frontiers in Plant Science, Vol. 7
  • DOI: 10.3389/fpls.2016.02056

Lignin content in natural Populus variants affects sugar release
journal, March 2011

  • Studer, M. H.; DeMartini, J. D.; Davis, M. F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 15, p. 6300-6305
  • DOI: 10.1073/pnas.1009252108

Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass
journal, January 2014


Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass
journal, February 2011

  • Fu, Chunxiang; Mielenz, Jonathan R.; Xiao, Xirong
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 9, p. 3803-3808
  • DOI: 10.1073/pnas.1100310108

Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity
journal, December 2012

  • Tenkanen, Maija; Vršanská, Mária; Siika-aho, Matti
  • FEBS Journal, Vol. 280, Issue 1
  • DOI: 10.1111/febs.12069

Feruloylation in Grasses: Current and Future Perspectives
journal, September 2009


Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex
journal, November 2011

  • Atmodjo, M. A.; Sakuragi, Y.; Zhu, X.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 50
  • DOI: 10.1073/pnas.1112816108

Soluble Lignin Recovered from Biorefinery Pretreatment Hydrolyzate Characterized by Lignin–Carbohydrate Complexes
journal, October 2017


Complex pectin metabolism by gut bacteria reveals novel catalytic functions
journal, March 2017

  • Ndeh, Didier; Rogowski, Artur; Cartmell, Alan
  • Nature, Vol. 544, Issue 7648
  • DOI: 10.1038/nature21725

Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production
journal, October 2011

  • Jung, H. G.; Mertens, D. R.; Phillips, R. L.
  • Journal of Dairy Science, Vol. 94, Issue 10
  • DOI: 10.3168/jds.2011-4495

Evolving Views of Pectin Biosynthesis
journal, April 2013


The occurrence of tricin and its derivatives in plants
journal, January 2016

  • Li, Mi; Pu, Yunqiao; Yoo, Chang Geun
  • Green Chemistry, Vol. 18, Issue 6
  • DOI: 10.1039/C5GC03062E

Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato
journal, April 2013

  • de Godoy, Fabiana; Bermúdez, Luisa; Lira, Bruno Silvestre
  • Journal of Experimental Botany, Vol. 64, Issue 8
  • DOI: 10.1093/jxb/ert106

Relation between Chemical Structure and Supramolecular Organization of Synthetic Lignin−Pectin Particles
journal, November 2009

  • Habrant, Anouck; Gaillard, Cédric; Ralet, Marie-Christine
  • Biomacromolecules, Vol. 10, Issue 11
  • DOI: 10.1021/bm900950r

Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase
journal, March 2006

  • Sterling, J. D.; Atmodjo, M. A.; Inwood, S. E.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 13, p. 5236-5241
  • DOI: 10.1073/pnas.0600120103

Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment
journal, December 2008

  • Donohoe, Bryon S.; Decker, Stephen R.; Tucker, Melvin P.
  • Biotechnology and Bioengineering, Vol. 101, Issue 5
  • DOI: 10.1002/bit.21959

Pseudo-lignin and pretreatment chemistry
journal, January 2011

  • Sannigrahi, Poulomi; Kim, Dong Ho; Jung, Seokwon
  • Energy Environ. Sci., Vol. 4, Issue 4
  • DOI: 10.1039/C0EE00378F

Correlation analysis of31P NMR chemical shifts with substituent effects of phenols
journal, May 1995

  • Jiang, Zhi-Hua; Argyropoulos, Dimitris S.; Granata, Alessandro
  • Magnetic Resonance in Chemistry, Vol. 33, Issue 5
  • DOI: 10.1002/mrc.1260330509

Location of Lignin-Bonded Pectic Polysaccharides
journal, June 1991


Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass
journal, February 2013


Pretreatment: the key to unlocking low-cost cellulosic ethanol
journal, January 2008

  • Yang, Bin; Wyman, Charles E.
  • Biofuels, Bioproducts and Biorefining, Vol. 2, Issue 1
  • DOI: 10.1002/bbb.49

Pectin structure and biosynthesis
journal, June 2008


31 P NMR Characterization of Tricin and Its Structurally Similar Flavonoids
journal, April 2017


Isolation and characterization of hemicelluloses extracted by hydrothermal pretreatment
journal, June 2012


Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions
journal, May 2004


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.