skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The use of strain to tailor electronic thermoelectric transport properties: A first principles study of 2H-phase CuAlO2

Abstract

Using first principles calculations, the use of strain to adjust electronic transport and the resultant thermoelectric (TE) properties is discussed using 2H phase CuAlO2 as a test case. Transparent oxide materials, such as CuAlO2, a p-­type transparent conducting oxide (TCO), have recently been studied for high temperature thermoelectric power generators and coolers for waste heat. Given TCO materials with relative ease of fabrication, low cost of materials, and non-­toxicity, the ability to tailor them to specific temperature ranges, power needs, and size requirements, through the use of strain opens an interesting avenue. We find that strain can have a significant effect on these properties, in some cases detrimental and in others beneficial, including the potential for n-­type power factors larger than the highest p-type case. The physical reasons for this behavior are explained in the terms of the thermoelectric transport distribution and the Landauer distribution of modes.

Authors:
 [1];  [2]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1508961
Report Number(s):
BNL-211589-2019-JAAM
Journal ID: ISSN 0021-8979
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 125; Journal Issue: 8; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Witkoske, Evan, Guzman, David, Feng, Yining, Strachan, Alejandro, Lundstrom, Mark, and Lu, Na. The use of strain to tailor electronic thermoelectric transport properties: A first principles study of 2H-phase CuAlO2. United States: N. p., 2019. Web. doi:10.1063/1.5058275.
Witkoske, Evan, Guzman, David, Feng, Yining, Strachan, Alejandro, Lundstrom, Mark, & Lu, Na. The use of strain to tailor electronic thermoelectric transport properties: A first principles study of 2H-phase CuAlO2. United States. doi:10.1063/1.5058275.
Witkoske, Evan, Guzman, David, Feng, Yining, Strachan, Alejandro, Lundstrom, Mark, and Lu, Na. Tue . "The use of strain to tailor electronic thermoelectric transport properties: A first principles study of 2H-phase CuAlO2". United States. doi:10.1063/1.5058275. https://www.osti.gov/servlets/purl/1508961.
@article{osti_1508961,
title = {The use of strain to tailor electronic thermoelectric transport properties: A first principles study of 2H-phase CuAlO2},
author = {Witkoske, Evan and Guzman, David and Feng, Yining and Strachan, Alejandro and Lundstrom, Mark and Lu, Na},
abstractNote = {Using first principles calculations, the use of strain to adjust electronic transport and the resultant thermoelectric (TE) properties is discussed using 2H phase CuAlO2 as a test case. Transparent oxide materials, such as CuAlO2, a p-­type transparent conducting oxide (TCO), have recently been studied for high temperature thermoelectric power generators and coolers for waste heat. Given TCO materials with relative ease of fabrication, low cost of materials, and non-­toxicity, the ability to tailor them to specific temperature ranges, power needs, and size requirements, through the use of strain opens an interesting avenue. We find that strain can have a significant effect on these properties, in some cases detrimental and in others beneficial, including the potential for n-­type power factors larger than the highest p-type case. The physical reasons for this behavior are explained in the terms of the thermoelectric transport distribution and the Landauer distribution of modes.},
doi = {10.1063/1.5058275},
journal = {Journal of Applied Physics},
number = 8,
volume = 125,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients
journal, January 2010

  • Jeong, Changwook; Kim, Raseong; Luisier, Mathieu
  • Journal of Applied Physics, Vol. 107, Issue 2
  • DOI: 10.1063/1.3291120

Electronic structure and small polaron hole transport of copper aluminate
journal, September 2001


III-nitrides for energy production: photovoltaic and thermoelectric applications
journal, June 2013


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Thermoelectric band engineering: The role of carrier scattering
journal, November 2017

  • Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark
  • Journal of Applied Physics, Vol. 122, Issue 17
  • DOI: 10.1063/1.4994696

Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges : Thermoelectric Devices for Power Generation
journal, September 2015

  • Zhang, Qi Hao; Huang, Xiang Yang; Bai, Sheng Qiang
  • Advanced Engineering Materials, Vol. 18, Issue 2
  • DOI: 10.1002/adem.201500333

Band structure and thermopower of doped YCuO 2
journal, May 2008


Efficient Band Gap Prediction for Solids
journal, November 2010


Nanostructured Complex Cobalt Oxides as Potential Materials for Solar Thermoelectric Power Generators
journal, May 2005

  • Robert, R.; Romer, S.; Reller, A.
  • Advanced Engineering Materials, Vol. 7, Issue 5
  • DOI: 10.1002/adem.200500043

Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO[sub 2]
journal, January 2000

  • Yanagi, Hiroshi; Inoue, Shin-ichiro; Ueda, Kazushige
  • Journal of Applied Physics, Vol. 88, Issue 7
  • DOI: 10.1063/1.1308103

Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys
journal, December 2008

  • Joshi, Giri; Lee, Hohyun; Lan, Yucheng
  • Nano Letters, Vol. 8, Issue 12
  • DOI: 10.1021/nl8026795

High-resolution x-ray spectroscopic study of the electronic structure of the prototypical p -type transparent conducting oxide Cu Al O 2
journal, November 2005


Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films
journal, March 2005


Suppression of thermal conductivity in In x Ga 1−x N alloys by nanometer-scale disorder
journal, March 2013

  • Tong, T.; Fu, D.; Levander, A. X.
  • Applied Physics Letters, Vol. 102, Issue 12
  • DOI: 10.1063/1.4798838

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Electronic structure of p-type conducting transparent oxides
journal, May 2002


The best thermoelectric.
journal, July 1996

  • Mahan, G. D.; Sofo, J. O.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 15
  • DOI: 10.1073/pnas.93.15.7436

High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping
journal, September 2014

  • Pei, Yan-Ling; Wu, Haijun; Wu, Di
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja507945h

Electronic and structural properties of CuMO2 (M = Al, Ga, In)
journal, February 2005

  • Jayalakshmi, Venkatachalam; Murugan, Ramaswamy; Palanivel, Balan
  • Journal of Alloys and Compounds, Vol. 388, Issue 1
  • DOI: 10.1016/j.jallcom.2004.07.009

On the calculation of Lorenz numbers for complex thermoelectric materials
journal, February 2018

  • Wang, Xufeng; Askarpour, Vahid; Maassen, Jesse
  • Journal of Applied Physics, Vol. 123, Issue 5
  • DOI: 10.1063/1.5009939

Thermoelectric properties of single crystal CuAlO2 with a layered structure
journal, January 2001

  • Koumoto, Kunihito; Koduka, Hisashi; Seo, Won-Seon
  • Journal of Materials Chemistry, Vol. 11, Issue 2
  • DOI: 10.1039/b006850k

High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012

  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

Oxide Thermoelectric Materials: A Nanostructuring Approach
journal, June 2010


Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
journal, February 2006


Large enhancement of the thermopower in NaxCoO2 at high Na doping
journal, June 2006

  • Lee, Minhyea; Viciu, Liliana; Li, Lu
  • Nature Materials, Vol. 5, Issue 7
  • DOI: 10.1038/nmat1669

Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures
journal, December 1993


Electronic Structure and Bonding in CuMO 2 (M = Al, Ga, Y) Delafossite-Type Oxides:  An Ab Initio Study
journal, September 1999

  • Buljan, Antonio; Alemany, Pere; Ruiz, Eliseo
  • The Journal of Physical Chemistry B, Vol. 103, Issue 38
  • DOI: 10.1021/jp984420a

Introduction to thermoelectrics
journal, October 2016


P-type electrical conduction in transparent thin films of CuAlO2
journal, October 1997

  • Kawazoe, Hiroshi; Yasukawa, Masahiro; Hyodo, Hiroyuki
  • Nature, Vol. 389, Issue 6654
  • DOI: 10.1038/40087

Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy
journal, November 2008

  • Wang, X. W.; Lee, H.; Lan, Y. C.
  • Applied Physics Letters, Vol. 93, Issue 19
  • DOI: 10.1063/1.3027060

High Thermoelectric Performance of Nanostructured In2O3-Based Ceramics
journal, June 2012


Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities
journal, November 1983


Advances in thermoelectric materials research: Looking back and moving forward
journal, September 2017


First-principles study of electronic structures and thermoelectric properties of 2H–CuAlO2
journal, April 2015


Nanoscale solid-state cooling: a review
journal, August 2016


Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf or Bi
conference, January 2012

  • Yanagiya, S.; Nong, N. V.; Sonne, M.
  • 9TH EUROPEAN CONFERENCE ON THERMOELECTRICS: ECT2011, AIP Conference Proceedings
  • DOI: 10.1063/1.4731563

Metal oxides for thermoelectric power generation and beyond
journal, November 2017

  • Feng, Yining; Jiang, Xiaodong; Ghafari, Ehsan
  • Advanced Composites and Hybrid Materials, Vol. 1, Issue 1
  • DOI: 10.1007/s42114-017-0011-4

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Electronic structure and optical properties of CuAlO 2 under biaxial strain
journal, May 2012


Nanostructured thermoelectric materials: Current research and future challenge
journal, December 2012

  • Chen, Zhi-Gang; Han, Guang; Yang, Lei
  • Progress in Natural Science: Materials International, Vol. 22, Issue 6
  • DOI: 10.1016/j.pnsc.2012.11.011

Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory
journal, April 2017


XRD and XAS structural study of CuAlO 2 under high pressure
journal, February 2013


Lattice dynamics of CuAlO2 under high pressure fromab initio calculations
journal, January 2007

  • Rodríguez-Hernández, P.; Muñoz, A.; Pellicer-Porres, J.
  • physica status solidi (b), Vol. 244, Issue 1
  • DOI: 10.1002/pssb.200672519

Enhancing the electrical conductivity and thermoelectric figure of merit of the p-type delafossite CuAlO 2 by Ag 2 O addition
journal, October 2017

  • Pantian, Sarayut; Sakdanuphab, Rachsak; Sakulkalavek, Aparporn
  • Current Applied Physics, Vol. 17, Issue 10
  • DOI: 10.1016/j.cap.2017.06.011

Bulk nanostructured thermoelectric materials: current research and future prospects
journal, January 2009

  • Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.
  • Energy & Environmental Science, Vol. 2, Issue 5
  • DOI: 10.1039/b822664b

Search for new thermoelectric materials with low Lorenz number
journal, January 2017

  • McKinney, Robert W.; Gorai, Prashun; Stevanović, Vladan
  • Journal of Materials Chemistry A, Vol. 5, Issue 33
  • DOI: 10.1039/C7TA04332E

Recent developments in thermoelectric materials
journal, February 2003


Thermopower Study of GaN-Based Materials for Next-Generation Thermoelectric Devices and Applications
journal, November 2010

  • Hurwitz, Elisa N.; Asghar, Muhammad; Melton, Andrew
  • Journal of Electronic Materials, Vol. 40, Issue 5
  • DOI: 10.1007/s11664-010-1416-9

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Opto-electronic properties of CuAlO2
journal, January 1984


Density Functional Theory Study of P-Type Transparent Conducting 2H-CuAlO<sub>2</sub> Oxide
journal, December 2012


Recent Progress in Oxide Thermoelectric Materials: p-Type Ca 3 Co 4 O 9 and n-Type SrTiO 3
journal, October 2008

  • Ohta, Hiromichi; Sugiura, Kenji; Koumoto, Kunihito
  • Inorganic Chemistry, Vol. 47, Issue 19
  • DOI: 10.1021/ic800644x