DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development

Abstract

Terpenes are emitted by vegetation, and their oxidation in the atmosphere is an important source of secondary organic aerosol (SOA). A part of this oxidation can proceed through an autoxidation process, yielding highly oxygenated organic molecules (HOMs) with low saturation vapor pressure. They can therefore contribute, even in the absence of sulfuric acid, to new particle formation (NPF). The understanding of the autoxidation mechanism and its kinetics is still far from complete. Here, we present a mechanistic and kinetic analysis of mass spectrometry data from α-pinene (AP) ozonolysis experiments performed during the CLOUD 8 campaign at CERN. We grouped HOMs in classes according to their identified chemical composition and investigated the relative changes of these groups and their components as a function of the reagent concentration. We determined reaction rate constants for the different HOM peroxy radical reaction pathways. The accretion reaction between HOM peroxy radicals was found to be extremely fast. We developed a pseudo-mechanism for HOM formation and added it to the AP oxidation scheme of the Master Chemical Mechanism (MCM). With this extended model, the observed concentrations and trends in HOM formation were successfully simulated.

Authors:
ORCiD logo [1];  [2];  [2];  [1];  [3]; ORCiD logo [4];  [5];  [2];  [6]; ORCiD logo [7];  [1];  [8];  [1];  [4];  [2];  [9];  [10];  [4]; ORCiD logo [11];  [12] more »;  [13];  [5];  [10];  [14];  [1];  [2];  [4];  [2];  [4];  [1];  [2];  [15]; ORCiD logo [16];  [17];  [18];  [19]; ORCiD logo [1] « less
  1. Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
  2. Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
  3. Ionicon GesmbH, 6020 Innsbruck, Austria
  4. Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Post Office Box 64, FI-00014 Helsinki, Finland
  5. Institute for Ion and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
  6. Faculty of Sciences, University of Lisbon, Campo Grande 016, 1749-016 Lisboa, Portugal
  7. Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Post Office Box 64, FI-00014 Helsinki, Finland, Helsinki Institute of Physics, FI-00014 Helsinki, Finland
  8. University of Leeds, Leeds LS2 9JT, United Kingdom
  9. Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Post Office Box 64, FI-00014 Helsinki, Finland, Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560 Helsinki, Finland
  10. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt 53, 119991 Moscow, Russia
  11. Department of Environmental Systems Science, ETH Zurich, 8092 Zürich, Switzerland
  12. Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560 Helsinki, Finland
  13. Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Post Office Box 64, FI-00014 Helsinki, Finland, Department of Applied Physics, University of Eastern Finland, Post Office Box 1627, 70211 Kuopio, Finland
  14. Instituto Dom Luiz (IDL), Universidade da Beira Interior, 6201-001 Covilhã, Portugal
  15. Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
  16. Ionicon GesmbH, 6020 Innsbruck, Austria, Institute for Ion and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
  17. Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany, CERN, CH-1211 Geneva, Switzerland
  18. Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Post Office Box 64, FI-00014 Helsinki, Finland, Helsinki Institute of Physics, FI-00014 Helsinki, Finland, Aerosol and Haze Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
  19. Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, Post Office Box 64, FI-00014 Helsinki, Finland, Aerodyne Research, Incorporated, 45 Manning Road, Billerica, Massachusetts 01821, United States
Publication Date:
Research Org.:
Carnegie Mellon Univ., Pittsburgh, PA (United States); Paul Scherrer Inst. (PSI), Villigen (Switzerland)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1513034
Alternate Identifier(s):
OSTI ID: 1508847; OSTI ID: 1513250
Grant/Contract Number:  
SC00014469; SC0014469
Resource Type:
Published Article
Journal Name:
ACS Earth and Space Chemistry
Additional Journal Information:
Journal Name: ACS Earth and Space Chemistry Journal Volume: 3 Journal Issue: 5; Journal ID: ISSN 2472-3452
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; atmospheric oxidation mechanism; autoxidation; chamber study; CLOUD; dimers; HOM; peroxy radicals; terpene oxidation; HOM, terpene oxidation, autoxidation, dimers, peroxy radicals, chamber study, CLOUD, atmospheric oxidation mechanism

Citation Formats

Molteni, Ugo, Simon, Mario, Heinritzi, Martin, Hoyle, Christopher R., Bernhammer, Anne-Kathrin, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Dias, António, Duplissy, Jonathan, Frege, Carla, Gordon, Hamish, Heyn, Claudia, Jokinen, Tuija, Kürten, Andreas, Lehtipalo, Katrianne, Makhmutov, Vladimir, Petäjä, Tuukka, Pieber, Simone M., Praplan, Arnaud P., Schobesberger, Siegfried, Steiner, Gerhard, Stozhkov, Yuri, Tomé, António, Tröstl, Jasmin, Wagner, Andrea C., Wagner, Robert, Williamson, Christina, Yan, Chao, Baltensperger, Urs, Curtius, Joachim, Donahue, Neil M., Hansel, Armin, Kirkby, Jasper, Kulmala, Markku, Worsnop, Douglas R., and Dommen, Josef. Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. United States: N. p., 2019. Web. doi:10.1021/acsearthspacechem.9b00035.
Molteni, Ugo, Simon, Mario, Heinritzi, Martin, Hoyle, Christopher R., Bernhammer, Anne-Kathrin, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Dias, António, Duplissy, Jonathan, Frege, Carla, Gordon, Hamish, Heyn, Claudia, Jokinen, Tuija, Kürten, Andreas, Lehtipalo, Katrianne, Makhmutov, Vladimir, Petäjä, Tuukka, Pieber, Simone M., Praplan, Arnaud P., Schobesberger, Siegfried, Steiner, Gerhard, Stozhkov, Yuri, Tomé, António, Tröstl, Jasmin, Wagner, Andrea C., Wagner, Robert, Williamson, Christina, Yan, Chao, Baltensperger, Urs, Curtius, Joachim, Donahue, Neil M., Hansel, Armin, Kirkby, Jasper, Kulmala, Markku, Worsnop, Douglas R., & Dommen, Josef. Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. United States. https://doi.org/10.1021/acsearthspacechem.9b00035
Molteni, Ugo, Simon, Mario, Heinritzi, Martin, Hoyle, Christopher R., Bernhammer, Anne-Kathrin, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Dias, António, Duplissy, Jonathan, Frege, Carla, Gordon, Hamish, Heyn, Claudia, Jokinen, Tuija, Kürten, Andreas, Lehtipalo, Katrianne, Makhmutov, Vladimir, Petäjä, Tuukka, Pieber, Simone M., Praplan, Arnaud P., Schobesberger, Siegfried, Steiner, Gerhard, Stozhkov, Yuri, Tomé, António, Tröstl, Jasmin, Wagner, Andrea C., Wagner, Robert, Williamson, Christina, Yan, Chao, Baltensperger, Urs, Curtius, Joachim, Donahue, Neil M., Hansel, Armin, Kirkby, Jasper, Kulmala, Markku, Worsnop, Douglas R., and Dommen, Josef. Wed . "Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development". United States. https://doi.org/10.1021/acsearthspacechem.9b00035.
@article{osti_1513034,
title = {Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development},
author = {Molteni, Ugo and Simon, Mario and Heinritzi, Martin and Hoyle, Christopher R. and Bernhammer, Anne-Kathrin and Bianchi, Federico and Breitenlechner, Martin and Brilke, Sophia and Dias, António and Duplissy, Jonathan and Frege, Carla and Gordon, Hamish and Heyn, Claudia and Jokinen, Tuija and Kürten, Andreas and Lehtipalo, Katrianne and Makhmutov, Vladimir and Petäjä, Tuukka and Pieber, Simone M. and Praplan, Arnaud P. and Schobesberger, Siegfried and Steiner, Gerhard and Stozhkov, Yuri and Tomé, António and Tröstl, Jasmin and Wagner, Andrea C. and Wagner, Robert and Williamson, Christina and Yan, Chao and Baltensperger, Urs and Curtius, Joachim and Donahue, Neil M. and Hansel, Armin and Kirkby, Jasper and Kulmala, Markku and Worsnop, Douglas R. and Dommen, Josef},
abstractNote = {Terpenes are emitted by vegetation, and their oxidation in the atmosphere is an important source of secondary organic aerosol (SOA). A part of this oxidation can proceed through an autoxidation process, yielding highly oxygenated organic molecules (HOMs) with low saturation vapor pressure. They can therefore contribute, even in the absence of sulfuric acid, to new particle formation (NPF). The understanding of the autoxidation mechanism and its kinetics is still far from complete. Here, we present a mechanistic and kinetic analysis of mass spectrometry data from α-pinene (AP) ozonolysis experiments performed during the CLOUD 8 campaign at CERN. We grouped HOMs in classes according to their identified chemical composition and investigated the relative changes of these groups and their components as a function of the reagent concentration. We determined reaction rate constants for the different HOM peroxy radical reaction pathways. The accretion reaction between HOM peroxy radicals was found to be extremely fast. We developed a pseudo-mechanism for HOM formation and added it to the AP oxidation scheme of the Master Chemical Mechanism (MCM). With this extended model, the observed concentrations and trends in HOM formation were successfully simulated.},
doi = {10.1021/acsearthspacechem.9b00035},
journal = {ACS Earth and Space Chemistry},
number = 5,
volume = 3,
place = {United States},
year = {Wed Apr 03 00:00:00 EDT 2019},
month = {Wed Apr 03 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Formation of Highly Oxidized Radicals and Multifunctional Products from the Atmospheric Oxidation of Alkylbenzenes
journal, July 2017

  • Wang, Sainan; Wu, Runrun; Berndt, Torsten
  • Environmental Science & Technology, Vol. 51, Issue 15
  • DOI: 10.1021/acs.est.7b02374

Decomposition of substituted alkoxy radicals—part I: a generalized structure–activity relationship for reaction barrier heights
journal, January 2009

  • Vereecken, L.; Peeters, J.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 40
  • DOI: 10.1039/b909712k

Calculated Hydrogen Shift Rate Constants in Substituted Alkyl Peroxy Radicals
journal, September 2018

  • Otkjær, Rasmus V.; Jakobsen, Helene H.; Tram, Camilla Mia
  • The Journal of Physical Chemistry A, Vol. 122, Issue 43
  • DOI: 10.1021/acs.jpca.8b06223

Characterization of the mass-dependent transmission efficiency of a CIMS
journal, January 2016

  • Heinritzi, Martin; Simon, Mario; Steiner, Gerhard
  • Atmospheric Measurement Techniques, Vol. 9, Issue 4
  • DOI: 10.5194/amt-9-1449-2016

Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance
journal, January 2012

  • Orlando, John J.; Tyndall, Geoffrey S.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35166h

Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry
journal, May 2017


Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry
journal, November 2018

  • Zhao, Yue; Thornton, Joel A.; Pye, Havala O. T.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 48
  • DOI: 10.1073/pnas.1812147115

A high-resolution mass spectrometer to measure atmospheric ion composition
journal, January 2010

  • Junninen, H.; Ehn, M.; Petäjä, T.
  • Atmospheric Measurement Techniques, Vol. 3, Issue 4
  • DOI: 10.5194/amt-3-1039-2010

Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in α-Pinene Ozonolysis Products
journal, November 2015

  • Kurtén, Theo; Rissanen, Matti P.; Mackeprang, Kasper
  • The Journal of Physical Chemistry A, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpca.5b08948

Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
journal, August 2018

  • Stolzenburg, Dominik; Fischer, Lukas; Vogel, Alexander L.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 37
  • DOI: 10.1073/pnas.1807604115

Solar eclipse demonstrating the importance of photochemistry in new particle formation
journal, April 2017

  • Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep45707

Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

Highly Oxidized RO 2 Radicals and Consecutive Products from the Ozonolysis of Three Sesquiterpenes
journal, February 2016

  • Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten
  • Environmental Science & Technology, Vol. 50, Issue 5
  • DOI: 10.1021/acs.est.5b05321

Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
journal, January 2019


A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

New particle formation in the free troposphere: A question of chemistry and timing
journal, May 2016


Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO 2 Radicals and Their Reactions with NO, NO 2 , SO 2 , and Other RO 2 Radicals
journal, October 2015

  • Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf
  • The Journal of Physical Chemistry A, Vol. 119, Issue 41
  • DOI: 10.1021/acs.jpca.5b07295

Autoxidation of Organic Compounds in the Atmosphere
journal, September 2013

  • Crounse, John D.; Nielsen, Lasse B.; Jørgensen, Solvejg
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz4019207

Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years
journal, January 2014

  • Sindelarova, K.; Granier, C.; Bouarar, I.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 17
  • DOI: 10.5194/acp-14-9317-2014

Formation of highly oxygenated organic molecules from aromatic compounds
journal, January 2018

  • Molteni, Ugo; Bianchi, Federico; Klein, Felix
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 3
  • DOI: 10.5194/acp-18-1909-2018

Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O 2
journal, February 2012

  • Crounse, John D.; Knap, Hasse C.; Ørnsø, Kristian B.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp211560u

Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds
journal, January 2003

  • Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.
  • Atmospheric Chemistry and Physics, Vol. 3, Issue 1
  • DOI: 10.5194/acp-3-161-2003

Accretion Product Formation from Self- and Cross-Reactions of RO 2 Radicals in the Atmosphere
journal, March 2018

  • Berndt, Torsten; Scholz, Wiebke; Mentler, Bernhard
  • Angewandte Chemie International Edition, Vol. 57, Issue 14
  • DOI: 10.1002/anie.201710989

endo-Cyclization of unsaturated RO 2 radicals from the gas-phase ozonolysis of cyclohexadienes
journal, January 2017

  • Richters, Stefanie; Pfeifle, Mark; Olzmann, Matthias
  • Chemical Communications, Vol. 53, Issue 29
  • DOI: 10.1039/C7CC01350G

Characterisation of organic contaminants in the CLOUD chamber at CERN
journal, January 2014

  • Schnitzhofer, R.; Metzger, A.; Breitenlechner, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 7
  • DOI: 10.5194/amt-7-2159-2014

The role of low-volatility organic compounds in initial particle growth in the atmosphere
journal, May 2016

  • Tröstl, Jasmin; Chuang, Wayne K.; Gordon, Hamish
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature18271

Accretion Product Formation from Ozonolysis and OH Radical Reaction of α-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene
journal, September 2018

  • Berndt, Torsten; Mentler, Bernhard; Scholz, Wiebke
  • Environmental Science & Technology, Vol. 52, Issue 19
  • DOI: 10.1021/acs.est.8b02210

Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions
journal, October 2014

  • Kürten, Andreas; Jokinen, Tuija; Simon, Mario
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 42
  • DOI: 10.1073/pnas.1404853111

Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene
journal, November 2014

  • Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp510966g

Measurements of tropospheric HO 2 and RO 2 by oxygen dilution modulation and chemical ionization mass spectrometry
journal, January 2011

  • Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 4
  • DOI: 10.5194/amt-4-735-2011

The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene
journal, October 2014

  • Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko
  • Journal of the American Chemical Society, Vol. 136, Issue 44
  • DOI: 10.1021/ja507146s

Ion-induced nucleation of pure biogenic particles
journal, May 2016

  • Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17953

Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
journal, October 2016

  • Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1602360113

The tropospheric degradation of volatile organic compounds: a protocol for mechanism development
journal, January 1997


Hydroxyl radical-induced formation of highly oxidized organic compounds
journal, December 2016

  • Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13677

Atmospheric autoxidation is increasingly important in urban and suburban North America
journal, December 2017

  • Praske, Eric; Otkjær, Rasmus V.; Crounse, John D.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 1
  • DOI: 10.1073/pnas.1715540115

Atmospheric Degradation of Volatile Organic Compounds
journal, December 2003

  • Atkinson, Roger; Arey, Janet
  • Chemical Reviews, Vol. 103, Issue 12
  • DOI: 10.1021/cr0206420

Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study
journal, June 2015

  • Mutzel, Anke; Poulain, Laurent; Berndt, Torsten
  • Environmental Science & Technology, Vol. 49, Issue 13
  • DOI: 10.1021/acs.est.5b00885

NO 2 Suppression of Autoxidation–Inhibition of Gas-Phase Highly Oxidized Dimer Product Formation
journal, September 2018


High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time
journal, June 2010

  • Graus, Martin; Müller, Markus; Hansel, Armin
  • Journal of the American Society for Mass Spectrometry, Vol. 21, Issue 6
  • DOI: 10.1016/j.jasms.2010.02.006

Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF
journal, January 2012

  • Jokinen, T.; Sipilä, M.; Junninen, H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-4117-2012

Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications
journal, May 2015

  • Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 23
  • DOI: 10.1073/pnas.1423977112