skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanisms of Silica Fracture in Aqueous Electrolyte Solutions

Abstract

Glassy silicates are substantially weaker when in contact with aqueous electrolyte solutions than in vacuum due to chemical interactions with preexisting cracks. To investigate this silicate weakening phenomenon, classical molecular dynamics (MD) simulations of silica fracture were performed using the bond-order based, reactive force field ReaxFF. Four different environmental conditions were investigated: vacuum, water, and two salt solutions (1M NaCl, 1M NaOH) that form relatively acidic and basic solutions, respectively. Any aqueous environment weakens the silica, with NaOH additions resulting in the largest decreases in the effective fracture toughness (eK IC) of silica or the loading rate at which the fracture begins to propagate. The basic solution leads to higher surface deprotonation, narrower radius of curvature of the crack tip, and greater weakening of the silica, compared with the more acidic environment. The results from the two different electrolyte solutions correspond to phenomena observed in experiments and provide a unique atomistic insight into how anions alter the chemical-mechanical fracture response of silica.

Authors:
 [1];  [2];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1508653
Alternate Identifier(s):
OSTI ID: 1515215
Report Number(s):
SAND-2019-5276J
Journal ID: ISSN 2296-8016; 675427
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Published Article
Journal Name:
Frontiers in Materials
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2296-8016
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; fracture; silica; molecular dynamics simulation; dissolution; electrolyte

Citation Formats

Rimsza, Jessica M., Jones, Reese E., and Criscenti, Louise J. Mechanisms of Silica Fracture in Aqueous Electrolyte Solutions. United States: N. p., 2019. Web. doi:10.3389/fmats.2019.00079.
Rimsza, Jessica M., Jones, Reese E., & Criscenti, Louise J. Mechanisms of Silica Fracture in Aqueous Electrolyte Solutions. United States. doi:10.3389/fmats.2019.00079.
Rimsza, Jessica M., Jones, Reese E., and Criscenti, Louise J. Wed . "Mechanisms of Silica Fracture in Aqueous Electrolyte Solutions". United States. doi:10.3389/fmats.2019.00079.
@article{osti_1508653,
title = {Mechanisms of Silica Fracture in Aqueous Electrolyte Solutions},
author = {Rimsza, Jessica M. and Jones, Reese E. and Criscenti, Louise J.},
abstractNote = {Glassy silicates are substantially weaker when in contact with aqueous electrolyte solutions than in vacuum due to chemical interactions with preexisting cracks. To investigate this silicate weakening phenomenon, classical molecular dynamics (MD) simulations of silica fracture were performed using the bond-order based, reactive force field ReaxFF. Four different environmental conditions were investigated: vacuum, water, and two salt solutions (1M NaCl, 1M NaOH) that form relatively acidic and basic solutions, respectively. Any aqueous environment weakens the silica, with NaOH additions resulting in the largest decreases in the effective fracture toughness (eKIC) of silica or the loading rate at which the fracture begins to propagate. The basic solution leads to higher surface deprotonation, narrower radius of curvature of the crack tip, and greater weakening of the silica, compared with the more acidic environment. The results from the two different electrolyte solutions correspond to phenomena observed in experiments and provide a unique atomistic insight into how anions alter the chemical-mechanical fracture response of silica.},
doi = {10.3389/fmats.2019.00079},
journal = {Frontiers in Materials},
number = ,
volume = 6,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.3389/fmats.2019.00079

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Solubility of Amorphous Silica in Water
journal, June 1954

  • Alexander, Go B.; Heston, W. M.; Iler, R. K.
  • The Journal of Physical Chemistry, Vol. 58, Issue 6
  • DOI: 10.1021/j150516a002

Surface Structure and Stability of Partially Hydroxylated Silica Surfaces
journal, April 2017


Molecular Dynamics Simulations of Water Structure and Diffusion in Silica Nanopores
journal, May 2012

  • Bourg, Ian C.; Steefel, Carl I.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 21
  • DOI: 10.1021/jp301299a

The Use of Atomic Force Microscopy to Study Crack Tips in Glass
journal, December 2010

  • Wiederhorn, Sheldon M.; Guin, Jean-Pierre; Fett, Theo
  • Metallurgical and Materials Transactions A, Vol. 42, Issue 2
  • DOI: 10.1007/s11661-010-0411-3

First-Principles Study of Hydrolysis Reaction Barriers in a Sodium Borosilicate Glass
journal, November 2013

  • Zapol, Peter; He, Haiying; Kwon, Kideok D.
  • International Journal of Applied Glass Science, Vol. 4, Issue 4
  • DOI: 10.1111/ijag.12052

Effect of Ions on H-Bond Structure and Dynamics at the Quartz(101)–Water Interface
journal, October 2016


Chemical Effects on Subcritical Fracture in Silica From Molecular Dynamics Simulations
journal, November 2018

  • Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.
  • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 11
  • DOI: 10.1029/2018JB016120

Silicate Glass and Mineral Dissolution:  Calculated Reaction Paths and Activation Energies for Hydrolysis of a Q 3 Si by H 3 O + Using Ab Initio Methods
journal, January 2006

  • Criscenti, Louise J.; Kubicki, James D.; Brantley, Susan L.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 1
  • DOI: 10.1021/jp044360a

Acid-base dissociation mechanisms and energetics at the silica–water interface: An activationless process
journal, August 2015

  • Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.
  • Journal of Colloid and Interface Science, Vol. 451
  • DOI: 10.1016/j.jcis.2015.01.094

A radiotracer determination of the adsorption of sodium ion in the compact part of the double layer of vitreous silica
journal, January 1978


Molecular dynamics simulations of nanoporous organosilicate glasses using Reactive Force Field (ReaxFF)
journal, January 2016


The hydrophilic-to-hydrophobic transition in glassy silica is driven by the atomic topology of its surface
journal, February 2018

  • Yu, Yingtian; Krishnan, N. M. Anoop; Smedskjaer, Morten M.
  • The Journal of Chemical Physics, Vol. 148, Issue 7
  • DOI: 10.1063/1.5010934

The structure of sodium tetrasilicate glass from neutron diffraction, reverse Monte Carlo simulations and Raman spectroscopy
journal, March 1998


Atomistic computer simulations of water interactions and dissolution of inorganic glasses
journal, November 2017


Aqueous NaCl and CsCl Solutions Confined in Crystalline Slit-Shaped Silica Nanopores of Varying Degree of Protonation
journal, December 2011

  • Ho, Tuan A.; Argyris, D.; Cole, D. R.
  • Langmuir, Vol. 28, Issue 2
  • DOI: 10.1021/la2036086

Adsorption of Singly Charged Ions at the Hydroxylated (0001) α-Quartz/Water Interface
journal, February 2016

  • Pfeiffer-Laplaud, Morgane; Gaigeot, Marie-Pierre
  • The Journal of Physical Chemistry C, Vol. 120, Issue 9
  • DOI: 10.1021/acs.jpcc.5b10947

Molecular simulation of water confined in nanoporous silica
journal, June 2010


Stress corrosion cracking of quartz: A note on the influence of chemical environment
journal, August 1981


Dynamics of Confined Reactive Water in Smectite Clay–Zeolite Composites
journal, February 2012

  • Pitman, Michael C.; van Duin, Adri C. T.
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja208894m

Ab initio Molecular Dynamics Simulations of the Hydroxylation of Nanoporous Silica
journal, August 2015

  • Rimsza, J. M.; Du, Jincheng
  • Journal of the American Ceramic Society, Vol. 98, Issue 12
  • DOI: 10.1111/jace.13731

Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions
journal, November 2005


Atomic-scale interaction of a crack and an infiltrating fluid
journal, January 2019


Nanoporous silica gel structures and evolution from reactive force field-based molecular dynamics simulations
journal, July 2018


ReaxFF Molecular Dynamics Simulations of Hydroxylation Kinetics for Amorphous and Nano-Silica Structure, and Its Relations with Atomic Strain Energy
journal, December 2015

  • Yeon, Jejoon; van Duin, Adri C. T.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 1
  • DOI: 10.1021/acs.jpcc.5b09784

Effects of Counterions on Crack Growth in Vitreous Silica
journal, December 1987


Interaction of NaOH solutions with silica surfaces
journal, April 2018

  • Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.
  • Journal of Colloid and Interface Science, Vol. 516
  • DOI: 10.1016/j.jcis.2018.01.049

Reaction Rates and Dissolution Mechanisms of Quartz as a Function of pH
journal, March 2008

  • Nangia, Shikha; Garrison, Barbara J.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 10
  • DOI: 10.1021/jp076243w

Water Interactions with Nanoporous Silica: Comparison of ReaxFF and ab Initio based Molecular Dynamics Simulations
journal, October 2016

  • Rimsza, J. M.; Yeon, Jejoon; van Duin, A. C. T.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 43
  • DOI: 10.1021/acs.jpcc.6b07939

Reactive simulations of the activation barrier to dissolution of amorphous silica in water
journal, January 2014

  • Kagan, Michael; Lockwood, Glenn K.; Garofalini, Stephen H.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 20
  • DOI: 10.1039/C4CP00030G

The structure of vitreous silica
journal, October 1969


A quantum mechanical study of the reactivity of (SiO)2-defective silica surfaces
journal, May 2008

  • Rimola, Albert; Ugliengo, Piero
  • The Journal of Chemical Physics, Vol. 128, Issue 20
  • DOI: 10.1063/1.2929827

The surface chemistry of amorphous silica. Zhuravlev model
journal, November 2000


ReaxFF SiO Reactive Force Field for Silicon and Silicon Oxide Systems
journal, May 2003

  • van Duin, Adri C. T.; Strachan, Alejandro; Stewman, Shannon
  • The Journal of Physical Chemistry A, Vol. 107, Issue 19
  • DOI: 10.1021/jp0276303

Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses
journal, January 2007


Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses
journal, November 1995

  • Dove, Patricia M.
  • Journal of Geophysical Research: Solid Earth, Vol. 100, Issue B11
  • DOI: 10.1029/95JB02155

Interfacial Structure and Evolution of the Water–Silica Gel System by Reactive Force-Field-Based Molecular Dynamics Simulations
journal, May 2017


Ab Initio Investigation of Dissolution Mechanisms in Aluminosilicate Minerals
journal, February 2009

  • Morrow, Christin P.; Nangia, Shikha; Garrison, Barbara J.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 7
  • DOI: 10.1021/jp8079099

Effect of Electrolyte pH on Crack Propagation in Glass
journal, April 1973


Environmentally Enhanced Fracture of Glass: A Historical Perspective
journal, July 2009

  • Freiman, Stephen W.; Wiederhorn, Sheldon M.; Mecholsky, Jr., John J.
  • Journal of the American Ceramic Society, Vol. 92, Issue 7
  • DOI: 10.1111/j.1551-2916.2009.03097.x

Molecular dynamics studies of brittle fracture in vitreous silica: Review and recent progress
journal, June 2005


Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


A New Hypothesis for the Dissolution Mechanism of Silicates
journal, August 2012

  • Kubicki, James D.; Sofo, Jorge O.; Skelton, Adam A.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 33
  • DOI: 10.1021/jp300623v

A reactive molecular dynamics simulation of the silica-water interface
journal, May 2010

  • Fogarty, Joseph C.; Aktulga, Hasan Metin; Grama, Ananth Y.
  • The Journal of Chemical Physics, Vol. 132, Issue 17
  • DOI: 10.1063/1.3407433

Dissociative Water Potential for Molecular Dynamics Simulations
journal, August 2007

  • Mahadevan, T. S.; Garofalini, S. H.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 30
  • DOI: 10.1021/jp072530o

Revisiting silica with ReaxFF: Towards improved predictions of glass structure and properties via reactive molecular dynamics
journal, July 2016


Crack propagation in silica from reactive classical molecular dynamics simulations
journal, November 2017

  • Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.
  • Journal of the American Ceramic Society, Vol. 101, Issue 4
  • DOI: 10.1111/jace.15292

Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques
journal, April 2012


Crack-Tip Structure in Soda-Lime-Silicate Glass
journal, March 2005


Dissociative Chemisorption of Water onto Silica Surfaces and Formation of Hydronium Ions
journal, February 2008

  • Mahadevan, T. S.; Garofalini, S. H.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 5
  • DOI: 10.1021/jp076936c

The dissolution kinetics of quartz in aqueous mixed cation solutions
journal, November 1999


How to build a better pair potential for water
journal, April 2001

  • Guillot, Bertrand; Guissani, Yves
  • The Journal of Chemical Physics, Vol. 114, Issue 15
  • DOI: 10.1063/1.1356002