DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A New Magnetic Topological Quantum Material Candidate by Design

Abstract

Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn2P2, a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSn2P2 has a layered, Bi2Te3-type structure. Ferromagnetic interactions dominate the Curie–Weiss susceptibility, but a transition to antiferromagnetic ordering occurs near 30 K. Neutron diffraction reveals that this is due to two-dimensional ferromagnetic spin alignment within individual Eu layers and antiferromagnetic alignment between layers—this magnetic state surrounds the Sn–P layers at low temperatures. The bulk electrical resistivity is sensitive to the magnetism. Electronic structure calculations reveal that EuSn2P2 might be a strong topological insulator, which can be a new magnetic topological quantum material (MTQM) candidate. The calculations show that surface states should be present, and they are indeed observed by angle-resolved photoelectron spectroscopy (ARPES) measurements.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [5]; ORCiD logo [7];  [8];  [9]; ORCiD logo [1];  [6]
  1. Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
  2. Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States, Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, United States
  3. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
  4. Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
  5. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People’s Republic of China
  6. Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
  7. Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan, Center for Quantum Frontiers of Research & Technology (QFort), Tainan 701, Taiwan
  8. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People’s Republic of China, Collaborative Innovation Center of Quantum Matter, Beijing 100871, People’s Republic of China, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
  9. Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, United States
Publication Date:
Research Org.:
Princeton Univ., NJ (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1507803
Alternate Identifier(s):
OSTI ID: 1515834; OSTI ID: 1558479
Grant/Contract Number:  
AC05-00OR22725; KC0402010
Resource Type:
Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Name: ACS Central Science Journal Volume: 5 Journal Issue: 5; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Gui, Xin, Pletikosic, Ivo, Cao, Huibo, Tien, Hung-Ju, Xu, Xitong, Zhong, Ruidan, Wang, Guangqiang, Chang, Tay-Rong, Jia, Shuang, Valla, Tonica, Xie, Weiwei, and Cava, Robert J. A New Magnetic Topological Quantum Material Candidate by Design. United States: N. p., 2019. Web. doi:10.1021/acscentsci.9b00202.
Gui, Xin, Pletikosic, Ivo, Cao, Huibo, Tien, Hung-Ju, Xu, Xitong, Zhong, Ruidan, Wang, Guangqiang, Chang, Tay-Rong, Jia, Shuang, Valla, Tonica, Xie, Weiwei, & Cava, Robert J. A New Magnetic Topological Quantum Material Candidate by Design. United States. https://doi.org/10.1021/acscentsci.9b00202
Gui, Xin, Pletikosic, Ivo, Cao, Huibo, Tien, Hung-Ju, Xu, Xitong, Zhong, Ruidan, Wang, Guangqiang, Chang, Tay-Rong, Jia, Shuang, Valla, Tonica, Xie, Weiwei, and Cava, Robert J. Fri . "A New Magnetic Topological Quantum Material Candidate by Design". United States. https://doi.org/10.1021/acscentsci.9b00202.
@article{osti_1507803,
title = {A New Magnetic Topological Quantum Material Candidate by Design},
author = {Gui, Xin and Pletikosic, Ivo and Cao, Huibo and Tien, Hung-Ju and Xu, Xitong and Zhong, Ruidan and Wang, Guangqiang and Chang, Tay-Rong and Jia, Shuang and Valla, Tonica and Xie, Weiwei and Cava, Robert J.},
abstractNote = {Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn2P2, a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSn2P2 has a layered, Bi2Te3-type structure. Ferromagnetic interactions dominate the Curie–Weiss susceptibility, but a transition to antiferromagnetic ordering occurs near 30 K. Neutron diffraction reveals that this is due to two-dimensional ferromagnetic spin alignment within individual Eu layers and antiferromagnetic alignment between layers—this magnetic state surrounds the Sn–P layers at low temperatures. The bulk electrical resistivity is sensitive to the magnetism. Electronic structure calculations reveal that EuSn2P2 might be a strong topological insulator, which can be a new magnetic topological quantum material (MTQM) candidate. The calculations show that surface states should be present, and they are indeed observed by angle-resolved photoelectron spectroscopy (ARPES) measurements.},
doi = {10.1021/acscentsci.9b00202},
journal = {ACS Central Science},
number = 5,
volume = 5,
place = {United States},
year = {Fri Apr 19 00:00:00 EDT 2019},
month = {Fri Apr 19 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acscentsci.9b00202

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Crystal structure of EuSn2P2 from different viewpoints, where the green, gray, and red balls represent Eu, Sn, and P atoms, respectively. (A) Single crystal picture of EuSn2P2. (B, C) Layered characteristic structure of EuSn2P2 (looking perpendicular to the caxis). (D) Emphasizing the honeycomb character of the double Snmore » layers in the basal plane and the triangular planes of Eu (looking parallel to the $c$-axis).« less

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Quantum computers
journal, March 2010


A search model for topological insulators with high-throughput robustness descriptors
journal, May 2012

  • Yang, Kesong; Setyawan, Wahyu; Wang, Shidong
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3332

Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi 2 Se 3
journal, May 2011


The birth of topological insulators
journal, March 2010


Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection
journal, August 2011


High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
journal, March 2015

  • Chang, Cui-Zu; Zhao, Weiwei; Kim, Duk Y.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4204

Topological insulators with commensurate antiferromagnetism
journal, August 2013


A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Large, non-saturating magnetoresistance in WTe2
journal, September 2014

  • Ali, Mazhar N.; Xiong, Jun; Flynn, Steven
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13763

Ab-initio simulations of materials using VASP: Density-functional theory and beyond
journal, October 2008

  • Hafner, Jürgen
  • Journal of Computational Chemistry, Vol. 29, Issue 13
  • DOI: 10.1002/jcc.21057

Dynamical axion field in topological magnetic insulators
journal, March 2010

  • Li, Rundong; Wang, Jing; Qi, Xiao-Liang
  • Nature Physics, Vol. 6, Issue 4
  • DOI: 10.1038/nphys1534

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
journal, March 2013


SnAs-Based Layered Superconductor NaSn 2 As 2
journal, December 2017

  • Goto, Yosuke; Yamada, Akira; Matsuda, Tatsuma D.
  • Journal of the Physical Society of Japan, Vol. 86, Issue 12
  • DOI: 10.7566/JPSJ.86.123701

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Epitaxial growth of ultraflat stanene with topological band inversion
journal, November 2018


Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


Comprehensive search for topological materials using symmetry indicators
journal, February 2019


Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface
journal, May 2009

  • Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang
  • Nature Physics, Vol. 5, Issue 6, p. 438-442
  • DOI: 10.1038/nphys1270

Topological quantum chemistry
journal, July 2017

  • Bradlyn, Barry; Elcoro, L.; Cano, Jennifer
  • Nature, Vol. 547, Issue 7663
  • DOI: 10.1038/nature23268

A magnetic heterostructure of topological insulators as a candidate for an axion insulator
journal, February 2017

  • Mogi, M.; Kawamura, M.; Yoshimi, R.
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4855

Antiferromagnetic topological insulators
journal, June 2010


First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method
journal, January 1997

  • Anisimov, Vladimir I.; Aryasetiawan, F.; Lichtenstein, A. I.
  • Journal of Physics: Condensed Matter, Vol. 9, Issue 4, p. 767-808
  • DOI: 10.1088/0953-8984/9/4/002

Single-crystal structure validation with the program PLATON
journal, January 2003


Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas in Bi 2 Se 3
journal, August 2011


Symmetry-based indicators of band topology in the 230 space groups
journal, June 2017


Crystal structure and chemistry of topological insulators
journal, January 2013

  • Cava, R. J.; Ji, Huiwen; Fuccillo, M. K.
  • Journal of Materials Chemistry C, Vol. 1, Issue 19
  • DOI: 10.1039/c3tc30186a

Electronic structure of SrSn2As2 near the topological critical point
journal, July 2017


Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors
journal, March 2013


Superconducting SrSnP with Strong Sn–P Antibonding Interaction: Is the Sn Atom Single or Mixed Valent?
journal, August 2018


Topological crystalline insulators in the SnTe material class
journal, January 2012

  • Hsieh, Timothy H.; Lin, Hsin; Liu, Junwei
  • Nature Communications, Vol. 3, Article No. 982
  • DOI: 10.1038/ncomms1969

The space group classification of topological band-insulators
journal, December 2012

  • Slager, Robert-Jan; Mesaros, Andrej; Juričić, Vladimir
  • Nature Physics, Vol. 9, Issue 2
  • DOI: 10.1038/nphys2513

A high-temperature ferromagnetic topological insulating phase by proximity coupling
journal, May 2016

  • Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17635

Goals and opportunities in quantum simulation
journal, April 2012

  • Cirac, J. Ignacio; Zoller, Peter
  • Nature Physics, Vol. 8, Issue 4
  • DOI: 10.1038/nphys2275

Topological superconductors: a review
journal, May 2017


The Zintl-Klemm Concept - A Historical Survey: The Zintl-Klemm Concept - A Historical Survey
journal, November 2014

  • Nesper, Reinhard
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 640, Issue 14
  • DOI: 10.1002/zaac.201400403

Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5
journal, December 2007


Tetradymites as thermoelectrics and topological insulators
journal, September 2017


Realization of a Type-II Nodal-Line Semimetal in Mg 3 Bi 2
journal, November 2018