DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery

Abstract

Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.

Authors:
 [1]; ORCiD logo [2];  [1];  [3];  [4];  [5]; ORCiD logo [6]; ORCiD logo [1];  [2];  [1];  [7]; ORCiD logo [5]; ORCiD logo [8]; ORCiD logo [3];  [2]; ORCiD logo [9]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Division
  3. Chinese Academy of Sciences (CAS), Beijing (China). Beijing Advanced Innovation Center for Materials Genome Engineering, Inst. of Physics
  4. Xiamen Univ., Xiamen (China). Dept. of Physics and the Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  6. Xiamen Univ., Xiamen (China). Dept. of Physics and the Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices; Xiamen Univ. Malaysia, Selangor (Malaysia)
  7. Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science
  9. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1542396
Alternate Identifier(s):
OSTI ID: 1507699
Report Number(s):
BNL-211556-2019-JAAM
Journal ID: ISSN 2041-1723; ark:/13030/qt9p5140p2
Grant/Contract Number:  
AC02-05CH11231; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Lin, Ruoqian, Hu, Enyuan, Liu, Mingjie, Wang, Yi, Cheng, Hao, Wu, Jinpeng, Zheng, Jin-Cheng, Wu, Qin, Bak, Seongmin, Tong, Xiao, Zhang, Rui, Yang, Wanli, Persson, Kristin A., Yu, Xiqian, Yang, Xiao-Qing, and Xin, Huolin L. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. United States: N. p., 2019. Web. doi:10.1038/s41467-019-09248-0.
Lin, Ruoqian, Hu, Enyuan, Liu, Mingjie, Wang, Yi, Cheng, Hao, Wu, Jinpeng, Zheng, Jin-Cheng, Wu, Qin, Bak, Seongmin, Tong, Xiao, Zhang, Rui, Yang, Wanli, Persson, Kristin A., Yu, Xiqian, Yang, Xiao-Qing, & Xin, Huolin L. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery. United States. https://doi.org/10.1038/s41467-019-09248-0
Lin, Ruoqian, Hu, Enyuan, Liu, Mingjie, Wang, Yi, Cheng, Hao, Wu, Jinpeng, Zheng, Jin-Cheng, Wu, Qin, Bak, Seongmin, Tong, Xiao, Zhang, Rui, Yang, Wanli, Persson, Kristin A., Yu, Xiqian, Yang, Xiao-Qing, and Xin, Huolin L. Tue . "Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery". United States. https://doi.org/10.1038/s41467-019-09248-0. https://www.osti.gov/servlets/purl/1542396.
@article{osti_1542396,
title = {Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery},
author = {Lin, Ruoqian and Hu, Enyuan and Liu, Mingjie and Wang, Yi and Cheng, Hao and Wu, Jinpeng and Zheng, Jin-Cheng and Wu, Qin and Bak, Seongmin and Tong, Xiao and Zhang, Rui and Yang, Wanli and Persson, Kristin A. and Yu, Xiqian and Yang, Xiao-Qing and Xin, Huolin L.},
abstractNote = {Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.},
doi = {10.1038/s41467-019-09248-0},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {Tue Apr 09 00:00:00 EDT 2019},
month = {Tue Apr 09 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 53 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on Lithium-Rich Layered Oxide Electrodes
journal, June 2014

  • Qiu, Bao; Wang, Jun; Xia, Yonggao
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 12
  • DOI: 10.1021/am501293y

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
journal, January 2016


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries
journal, February 2016

  • Nayak, Prasant Kumar; Grinblat, Judith; Levi, Mikhael
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502398

The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries
journal, February 2012

  • Sun, Yang-Kook; Lee, Min-Joon; Yoon, Chong S.
  • Advanced Materials, Vol. 24, Issue 9
  • DOI: 10.1002/adma.201104106

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
journal, January 2016

  • Saubanère, M.; McCalla, E.; Tarascon, J. -M.
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03048J

High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability
journal, January 2009

  • Wang, Q. Y.; Liu, J.; Murugan, A. Vadivel
  • Journal of Materials Chemistry, Vol. 19, Issue 28
  • DOI: 10.1039/b823506f

Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries
journal, March 2005

  • Thackeray, Michael M.; Johnson, Christopher S.; Vaughey, John T.
  • Journal of Materials Chemistry, Vol. 15, Issue 23, p. 2257-2267
  • DOI: 10.1039/b417616m

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
journal, October 2015

  • Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9711

Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes
journal, March 2011

  • Deng, Z. Q.; Manthiram, A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp200375d

Alleviating oxygen evolution from Li-excess oxide materials through theory-guided surface protection
journal, November 2018


Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries
journal, July 2016

  • Qiu, Bao; Zhang, Minghao; Wu, Lijun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12108

Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

Comprehensive Insights into the Structural and Chemical Changes in Mixed-Anion FeOF Electrodes by Using Operando PDF and NMR Spectroscopy
journal, March 2013

  • Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Castillo-Martínez, Elizabeth
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja400229v

Synthesis, Thermal, and Electrochemical Properties of AlPO[sub 4]-Coated LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials for a Li-Ion Cell
journal, January 2004

  • Cho, Jaephil; Kim, Tae-Joon; Kim, Jisuk
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1802411

Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries
journal, September 2012

  • Gu, Meng; Belharouak, Ilias; Genc, Arda
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302249v

High Capacity, Surface-Modified Layered Li [Li (1−x)3Mn (2−x)3Nix3Cox ∕ 3 ] O2 Cathodes with Low Irreversible Capacity Loss
journal, March 2006

  • Wu, Y.; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 5, p. A221-A224
  • DOI: 10.1149/1.2180528

Electrochemical and Structural Properties of xLi2M‘O3 ·(1− x )LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3)
journal, May 2004

  • Kim, Jeom-Soo; Johnson, Christopher S.; Vaughey, John T.
  • Chemistry of Materials, Vol. 16, Issue 10, p. 1996-2006
  • DOI: 10.1021/cm0306461

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

The effect of MgO coating on Li 1.17 Mn 0.48 Ni 0.23 Co 0.12 O 2 cathode material for lithium ion batteries
journal, February 2014


High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transition-Metal Oxide Cathodes
journal, February 2016

  • Yan, Pengfei; Zheng, Jianming; Zheng, Jiaxin
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502455

Comprehensive Study of the CuF 2 Conversion Reaction Mechanism in a Lithium Ion Battery
journal, July 2014

  • Hua, Xiao; Robert, Rosa; Du, Lin-Shu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 28
  • DOI: 10.1021/jp503902z

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Lithium Extraction Mechanism in Li-Rich Li 2 MnO 3 Involving Oxygen Hole Formation and Dimerization
journal, September 2016


Functioning Mechanism of AlF 3 Coating on the Li- and Mn-Rich Cathode Materials
journal, November 2014

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm502071h

Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade
journal, September 2015

  • Zheng, Fenghua; Yang, Chenghao; Xiong, Xunhui
  • Angewandte Chemie International Edition, Vol. 54, Issue 44
  • DOI: 10.1002/anie.201506408

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2
journal, February 2012


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries
journal, May 2016


L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides
journal, July 1984


High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
journal, December 2012

  • Gu, Meng; Belharouak, Ilias; Zheng, Jianming
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305065u

Magnesium-Doped Li 1.2 [Co 0.13 Ni 0.13 Mn 0.54 ]O 2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability
journal, March 2015

  • Wang, Yan X.; Shang, Ke H.; He, Wei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 23
  • DOI: 10.1021/acsami.5b03125

Structure and bonding at the atomic scale by scanning transmission electron microscopy
journal, April 2009


Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction
journal, April 2020


Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries
journal, February 2016

  • Nayak, Prasant Kumar; Grinblat, Judith; Levi, Mikhael
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502398

L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides
journal, July 1984


Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2
journal, February 2012


Lithium Extraction Mechanism in Li-Rich Li 2 MnO 3 Involving Oxygen Hole Formation and Dimerization
journal, September 2016


In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries
journal, May 2016


Magnesium-Doped Li 1.2 [Co 0.13 Ni 0.13 Mn 0.54 ]O 2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability
journal, March 2015

  • Wang, Yan X.; Shang, Ke H.; He, Wei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 23
  • DOI: 10.1021/acsami.5b03125

Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on Lithium-Rich Layered Oxide Electrodes
journal, June 2014

  • Qiu, Bao; Wang, Jun; Xia, Yonggao
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 12
  • DOI: 10.1021/am501293y

Electrochemical and Structural Properties of xLi2M‘O3 ·(1− x )LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3)
journal, May 2004

  • Kim, Jeom-Soo; Johnson, Christopher S.; Vaughey, John T.
  • Chemistry of Materials, Vol. 16, Issue 10, p. 1996-2006
  • DOI: 10.1021/cm0306461

High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Functioning Mechanism of AlF 3 Coating on the Li- and Mn-Rich Cathode Materials
journal, November 2014

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm502071h

Comprehensive Insights into the Structural and Chemical Changes in Mixed-Anion FeOF Electrodes by Using Operando PDF and NMR Spectroscopy
journal, March 2013

  • Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Castillo-Martínez, Elizabeth
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja400229v

Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes
journal, March 2011

  • Deng, Z. Q.; Manthiram, A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp200375d

Comprehensive Study of the CuF 2 Conversion Reaction Mechanism in a Lithium Ion Battery
journal, July 2014

  • Hua, Xiao; Robert, Rosa; Du, Lin-Shu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 28
  • DOI: 10.1021/jp503902z

Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
journal, December 2012

  • Gu, Meng; Belharouak, Ilias; Zheng, Jianming
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305065u

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
journal, October 2015

  • Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9711

Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
journal, January 2016


Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Alleviating oxygen evolution from Li-excess oxide materials through theory-guided surface protection
journal, November 2018


Unprecedented generation of 3D heterostructures by mechanochemical disassembly and re-ordering of incommensurate metal chalcogenides
journal, June 2020


Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries
journal, March 2005

  • Thackeray, Michael M.; Johnson, Christopher S.; Vaughey, John T.
  • Journal of Materials Chemistry, Vol. 15, Issue 23, p. 2257-2267
  • DOI: 10.1039/b417616m

High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability
journal, January 2009

  • Wang, Q. Y.; Liu, J.; Murugan, A. Vadivel
  • Journal of Materials Chemistry, Vol. 19, Issue 28
  • DOI: 10.1039/b823506f

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Electron-energy-loss core-edge structures in manganese oxides
journal, July 1993


PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/s0021889804011744

Synthesis, Thermal, and Electrochemical Properties of AlPO[sub 4]-Coated LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials for a Li-Ion Cell
journal, January 2004

  • Cho, Jaephil; Kim, Tae-Joon; Kim, Jisuk
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1802411

High Capacity, Surface-Modified Layered Li [Li (1−x)3Mn (2−x)3Nix3Cox ∕ 3 ] O2 Cathodes with Low Irreversible Capacity Loss
journal, March 2006

  • Wu, Y.; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 5, p. A221-A224
  • DOI: 10.1149/1.2180528

Works referencing / citing this record:

Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries
journal, January 2020

  • Wang, Ruijie; Zheng, Jinyun; Feng, Xiangming
  • Journal of Solid State Electrochemistry, Vol. 24, Issue 3
  • DOI: 10.1007/s10008-019-04485-1

Electrochemical activity of Samarium on starch-derived porous carbon: rechargeable Li- and Al-ion batteries
journal, March 2020