skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flow behavior of hydraulic fractured tight formations considering Pre-Darcy flow using EDFM

Abstract

For tight reservoirs/formations, flow in fracture and matrix obey different flow patterns. Pre-Darcy flow always exists in low permeability subsurface porous media while Darcy flow can be applied in fracture. It is an outstanding challenge to understand the flow behavior coupling different flow mechanisms. As numerical simulation can predict field-scale performance so the development of efficient simulation method becomes a key issue to evaluate the flow behavior. In this paper, we develop an improved discrete fracture model based on the widely used embedded discrete facture model (EDFM) to simulate the transport both in homogenous and heterogeneous porous media in the presence of Pre-Darcy flow. The conservation equations are derived for fracture and matrix firstly and then discretized by fully implicit method. The transmissibility of different connection types is defined and the detailed calculation workflow is presented as well. The proposed model is verified through the comparison with the model using local grid refined (LGR) method. It is discovered that our simulation method exhibits good accuracy when analyzing the effect of Pre-Darcy flow. Some examples are shown including 1D scalar transport, 2D heterogeneous, 3D flow, complex fracture system and multiple well system problems with fully-coupled flow in fracture and matrix. Themore » pressure distribution and well flux are demonstrated to analyze the Pre-Darcy flow characteristics. Results indicate that the new model works robustly for different flow problems which provide further insight into the Pre-Darcy flow in low permeability media.« less

Authors:
 [1]; ORCiD logo [2];  [1];  [1]
  1. China Univ. of Petroleum, Qingdao (China)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1507341
Report Number(s):
LA-UR-19-22761
Journal ID: ISSN 0016-2361
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Fuel
Additional Journal Information:
Journal Volume: 241; Journal ID: ISSN 0016-2361
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; Earth Sciences

Citation Formats

Xu, Jianchun, Chen, Bailian, Sun, Baojiang, and Jiang, Ruizhong. Flow behavior of hydraulic fractured tight formations considering Pre-Darcy flow using EDFM. United States: N. p., 2019. Web. doi:10.1016/j.fuel.2018.12.009.
Xu, Jianchun, Chen, Bailian, Sun, Baojiang, & Jiang, Ruizhong. Flow behavior of hydraulic fractured tight formations considering Pre-Darcy flow using EDFM. United States. doi:10.1016/j.fuel.2018.12.009.
Xu, Jianchun, Chen, Bailian, Sun, Baojiang, and Jiang, Ruizhong. Wed . "Flow behavior of hydraulic fractured tight formations considering Pre-Darcy flow using EDFM". United States. doi:10.1016/j.fuel.2018.12.009. https://www.osti.gov/servlets/purl/1507341.
@article{osti_1507341,
title = {Flow behavior of hydraulic fractured tight formations considering Pre-Darcy flow using EDFM},
author = {Xu, Jianchun and Chen, Bailian and Sun, Baojiang and Jiang, Ruizhong},
abstractNote = {For tight reservoirs/formations, flow in fracture and matrix obey different flow patterns. Pre-Darcy flow always exists in low permeability subsurface porous media while Darcy flow can be applied in fracture. It is an outstanding challenge to understand the flow behavior coupling different flow mechanisms. As numerical simulation can predict field-scale performance so the development of efficient simulation method becomes a key issue to evaluate the flow behavior. In this paper, we develop an improved discrete fracture model based on the widely used embedded discrete facture model (EDFM) to simulate the transport both in homogenous and heterogeneous porous media in the presence of Pre-Darcy flow. The conservation equations are derived for fracture and matrix firstly and then discretized by fully implicit method. The transmissibility of different connection types is defined and the detailed calculation workflow is presented as well. The proposed model is verified through the comparison with the model using local grid refined (LGR) method. It is discovered that our simulation method exhibits good accuracy when analyzing the effect of Pre-Darcy flow. Some examples are shown including 1D scalar transport, 2D heterogeneous, 3D flow, complex fracture system and multiple well system problems with fully-coupled flow in fracture and matrix. The pressure distribution and well flux are demonstrated to analyze the Pre-Darcy flow characteristics. Results indicate that the new model works robustly for different flow problems which provide further insight into the Pre-Darcy flow in low permeability media.},
doi = {10.1016/j.fuel.2018.12.009},
journal = {Fuel},
number = ,
volume = 241,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share: