skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced energy coupling for indirectly driven inertial confinement fusion

Abstract

The indirect drive scheme for inertial confinement fusion (ICF) employs x-rays generated within a high-Z cavity (hohlraum) to implode an embedded low-Z capsule filled with deuterium- tritium (DT) fuel to reach the high density and temperature required for thermonuclear burn. Recently, several cylinder hohlraum experiments on the National Ignition Facility (NIF) have reached the alpha-heating regime [1] where the self-heating by fusion products becomes dominant, producing neutron yields above 1 1016 [2{ 4]. However, there are still challenges on the path towards ignition, such as symmetry control, instability minimization and engineering feature mitigation [5]. Energy coupling from a cylindrical hohlraum to the capsule is typically less than 10%, or 150 kJ for a 1.9 MJ laser drive [1], thereby limiting the energy available in the final hot spot for fusion. Here we report the first experiment on NIF demonstrating 30% energy coupling to an Al capsule in a rugby-shaped Au hohlraum [6]. This high coupling efficiency can substantially enhance the performance margin and improve the prospects for ignition, both in mainline single- shell hot-spot designs and potential double-shell targets.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1] more »;  [2];  [2];  [2] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1507330
Alternate Identifier(s):
OSTI ID: 1491646
Report Number(s):
LA-UR-18-21219; LLNL-JRNL-745363
Journal ID: ISSN 1745-2473
Grant/Contract Number:  
89233218CNA000001; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 15; Journal Issue: 2; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Ping, Y., Smalyuk, V. A., Amendt, P., Tommasini, R., Field, J. E., Khan, S., Bennett, D., Dewald, E., Graziani, F., Johnson, S., Landen, O. L., MacPhee, A. G., Nikroo, A., Pino, J., Prisbrey, S., Ralph, J., Seugling, R., Strozzi, D., Tipton, R. E., Wang, Y. M., Loomis, E., Merritt, E., and Montgomery, D. Enhanced energy coupling for indirectly driven inertial confinement fusion. United States: N. p., 2018. Web. doi:10.1038/s41567-018-0331-5.
Ping, Y., Smalyuk, V. A., Amendt, P., Tommasini, R., Field, J. E., Khan, S., Bennett, D., Dewald, E., Graziani, F., Johnson, S., Landen, O. L., MacPhee, A. G., Nikroo, A., Pino, J., Prisbrey, S., Ralph, J., Seugling, R., Strozzi, D., Tipton, R. E., Wang, Y. M., Loomis, E., Merritt, E., & Montgomery, D. Enhanced energy coupling for indirectly driven inertial confinement fusion. United States. doi:10.1038/s41567-018-0331-5.
Ping, Y., Smalyuk, V. A., Amendt, P., Tommasini, R., Field, J. E., Khan, S., Bennett, D., Dewald, E., Graziani, F., Johnson, S., Landen, O. L., MacPhee, A. G., Nikroo, A., Pino, J., Prisbrey, S., Ralph, J., Seugling, R., Strozzi, D., Tipton, R. E., Wang, Y. M., Loomis, E., Merritt, E., and Montgomery, D. Mon . "Enhanced energy coupling for indirectly driven inertial confinement fusion". United States. doi:10.1038/s41567-018-0331-5. https://www.osti.gov/servlets/purl/1507330.
@article{osti_1507330,
title = {Enhanced energy coupling for indirectly driven inertial confinement fusion},
author = {Ping, Y. and Smalyuk, V. A. and Amendt, P. and Tommasini, R. and Field, J. E. and Khan, S. and Bennett, D. and Dewald, E. and Graziani, F. and Johnson, S. and Landen, O. L. and MacPhee, A. G. and Nikroo, A. and Pino, J. and Prisbrey, S. and Ralph, J. and Seugling, R. and Strozzi, D. and Tipton, R. E. and Wang, Y. M. and Loomis, E. and Merritt, E. and Montgomery, D.},
abstractNote = {The indirect drive scheme for inertial confinement fusion (ICF) employs x-rays generated within a high-Z cavity (hohlraum) to implode an embedded low-Z capsule filled with deuterium- tritium (DT) fuel to reach the high density and temperature required for thermonuclear burn. Recently, several cylinder hohlraum experiments on the National Ignition Facility (NIF) have reached the alpha-heating regime [1] where the self-heating by fusion products becomes dominant, producing neutron yields above 1 1016 [2{ 4]. However, there are still challenges on the path towards ignition, such as symmetry control, instability minimization and engineering feature mitigation [5]. Energy coupling from a cylindrical hohlraum to the capsule is typically less than 10%, or 150 kJ for a 1.9 MJ laser drive [1], thereby limiting the energy available in the final hot spot for fusion. Here we report the first experiment on NIF demonstrating 30% energy coupling to an Al capsule in a rugby-shaped Au hohlraum [6]. This high coupling efficiency can substantially enhance the performance margin and improve the prospects for ignition, both in mainline single- shell hot-spot designs and potential double-shell targets.},
doi = {10.1038/s41567-018-0331-5},
journal = {Nature Physics},
number = 2,
volume = 15,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Top: laser power vs time for outer beams (blue), inner beams (red), total (black) and backlighter (green). The laser drive had a reverse-ramp shape with duration ∼4 ns, peak power of 350 TW, and total energy of 1.08 MJ of which 68 kJ was used for the backlighter.more » Middle: Experimental schematic showing representative outer beams (blue) and inner beams (red). A Zr foil located at 12 mm from the target center was irradiated by 8 NIF beams to generate a 16 keV backlighter [20]. The hard x-rays are necessary to provide sufficient transmission through the imploded Al shell. The Al capsule supported by two 45 nm membranes was 3.0 mm in outer diameter and 148 µm thick, which is ∼ 50% greater than typical ICF capsules that are ∼ 2 mm in diameter. Two opposed windows made of HDC were patched on the hohlraum wall along the radiography axis to allow x-rays to pass through. Bottom: measured and simulated radiation temperature vs time.« less

Save / Share:

Works referenced in this record:

Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
journal, May 2018

  • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020057

X-ray area backlighter development at the National Ignition Facility (invited)
journal, November 2014

  • Barrios, M. A.; Regan, S. P.; Fournier, K. B.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4891713

Extracting core shape from x-ray images at the National Ignition Facility
journal, October 2012

  • Glenn, S. M.; Benedetti, L. R.; Bradley, D. K.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731743

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)
journal, May 2015

  • Tommasini, R.; Field, J. E.; Hammel, B. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921218

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

An indirect-drive non-cryogenic double-shell path to 1ω Nd-laser hybrid inertial fusion–fission energy
journal, August 2010


X-ray streak camera cathode development and timing accuracy of the 4ω ultraviolet fiducial system at the National Ignition Facility
journal, October 2012

  • Opachich, Y. P.; Palmer, N.; Homoelle, D.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732855

Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Streaked radiography measurements of convergent ablator performance (invited)
journal, October 2010

  • Hicks, D. G.; Spears, B. K.; Braun, D. G.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3475727

Advances in NLTE modeling for integrated simulations
journal, January 2010


Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

The National Ignition Facility
journal, December 2004


Dante soft x-ray power diagnostic for National Ignition Facility
journal, October 2004

  • Dewald, E. L.; Campbell, K. M.; Turner, R. E.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788872

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Ignition scaling laws and their application to capsule design
journal, May 2001

  • Herrmann, Mark C.; Tabak, Max; Lindl, John D.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1364516

Hohlraum-Driven Mid- Z ( SiO 2 ) Double-Shell Implosions on the Omega Laser Facility and Their Scaling to NIF
journal, October 2009


Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Progress toward Ignition with Noncryogenic Double-Shell Capsules
journal, May 2000


Detailed diagnosis of a double-shell collision under realistic implosion conditions
journal, May 2006

  • Kyrala, G. A.; Gunderson, M. A.; Delamater, N. D.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2179047

Inertially confined fusion plasmas dominated by alpha-particle self-heating
journal, April 2016

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature Physics, Vol. 12, Issue 8
  • DOI: 10.1038/nphys3720

Developing one-dimensional implosions for inertial confinement fusion science
journal, January 2016

  • Kline, J. L.; Yi, S. A.; Simakov, A. N.
  • High Power Laser Science and Engineering, Vol. 4
  • DOI: 10.1017/hpl.2016.43

Hohlraum-Driven Ignitionlike Double-Shell Implosions on the Omega Laser Facility
journal, February 2005


Progress towards a more predictive model for hohlraum radiation drive and symmetry
journal, May 2017

  • Jones, O. S.; Suter, L. J.; Scott, H. A.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982693

Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement
journal, January 2008

  • Amendt, Peter; Cerjan, C.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 15, Issue 1
  • DOI: 10.1063/1.2825662

Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums
journal, May 2007

  • Amendt, Peter; Cerjan, C.; Hamza, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2716406

Progress in hohlraum physics for the National Ignition Facility
journal, May 2014

  • Moody, J. D.; Callahan, D. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876966

    Works referencing / citing this record:

    Experimental study of energy transfer in double shell implosions
    journal, May 2019

    • Merritt, E. C.; Sauppe, J. P.; Loomis, E. N.
    • Physics of Plasmas, Vol. 26, Issue 5
    • DOI: 10.1063/1.5086674

    The blind implosion-maker: Automated inertial confinement fusion experiment design
    journal, June 2019

    • Hatfield, P. W.; Rose, S. J.; Scott, R. H. H.
    • Physics of Plasmas, Vol. 26, Issue 6
    • DOI: 10.1063/1.5091985

    Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light
    journal, October 2019

    • Zhao, Yao; Weng, Suming; Sheng, Zhengming
    • Plasma Physics and Controlled Fusion, Vol. 61, Issue 11
    • DOI: 10.1088/1361-6587/ab4691

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.