skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulated refraction-enhanced X-ray radiography of laser-driven shocks

Abstract

Refraction-enhanced x-ray radiography (REXR) is used to infer shock-wave positions of more than one shock wave, launched by a multiple-picket pulse in a planar plastic foil. This includes locating shock waves before the shocks merge, during the early time and the main drive of the laser pulse that is not possible with the velocity interferometer system for any reflector. Simulations presented in this paper of REXR show that it is necessary to incorporate refraction and attenuation of x rays along with the appropriate opacity and refractive-index tables to interpret experimental images. Simulated REXR shows good agreement with an experiment done on the OMEGA laser facility to image a shock wave. REXR can be applied to design multiple-picket pulses with a better understanding of the shock locations. Finally, this will be beneficial to obtain the required adiabats for inertial confinement fusion implosions.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1507125
Report Number(s):
2018-264; 1-488
Journal ID: ISSN 1070-664X; 2018-264, 1488, 2447
Grant/Contract Number:  
NA0003856
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 3; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Kar, Arnab, Boehly, T. R., Radha, P. B., Edgell, D. H., Hu, S. X., Nilson, P. M., Shvydky, A., Theobald, W., Cao, D., Anderson, K. S., Goncharov, V. N., and Regan, S. P. Simulated refraction-enhanced X-ray radiography of laser-driven shocks. United States: N. p., 2019. Web. doi:10.1063/1.5084968.
Kar, Arnab, Boehly, T. R., Radha, P. B., Edgell, D. H., Hu, S. X., Nilson, P. M., Shvydky, A., Theobald, W., Cao, D., Anderson, K. S., Goncharov, V. N., & Regan, S. P. Simulated refraction-enhanced X-ray radiography of laser-driven shocks. United States. doi:10.1063/1.5084968.
Kar, Arnab, Boehly, T. R., Radha, P. B., Edgell, D. H., Hu, S. X., Nilson, P. M., Shvydky, A., Theobald, W., Cao, D., Anderson, K. S., Goncharov, V. N., and Regan, S. P. Fri . "Simulated refraction-enhanced X-ray radiography of laser-driven shocks". United States. doi:10.1063/1.5084968. https://www.osti.gov/servlets/purl/1507125.
@article{osti_1507125,
title = {Simulated refraction-enhanced X-ray radiography of laser-driven shocks},
author = {Kar, Arnab and Boehly, T. R. and Radha, P. B. and Edgell, D. H. and Hu, S. X. and Nilson, P. M. and Shvydky, A. and Theobald, W. and Cao, D. and Anderson, K. S. and Goncharov, V. N. and Regan, S. P.},
abstractNote = {Refraction-enhanced x-ray radiography (REXR) is used to infer shock-wave positions of more than one shock wave, launched by a multiple-picket pulse in a planar plastic foil. This includes locating shock waves before the shocks merge, during the early time and the main drive of the laser pulse that is not possible with the velocity interferometer system for any reflector. Simulations presented in this paper of REXR show that it is necessary to incorporate refraction and attenuation of x rays along with the appropriate opacity and refractive-index tables to interpret experimental images. Simulated REXR shows good agreement with an experiment done on the OMEGA laser facility to image a shock wave. REXR can be applied to design multiple-picket pulses with a better understanding of the shock locations. Finally, this will be beneficial to obtain the required adiabats for inertial confinement fusion implosions.},
doi = {10.1063/1.5084968},
journal = {Physics of Plasmas},
number = 3,
volume = 26,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA
journal, May 2018

  • Cao, D.; Boehly, T. R.; Gregor, M. C.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022992

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications
journal, September 2014


Laser-driven shock waves studied by x-ray radiography
journal, June 2017


Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime
journal, July 2018

  • Christopherson, A. R.; Betti, R.; Howard, J.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5030337

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


Studies of Plastic-Ablator Compressibility for Direct-Drive Inertial Confinement Fusion on Omega
journal, May 2008


Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA
journal, April 2010


Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas
journal, January 2013

  • Koch, Jeffrey A.; Landen, Otto L.; Suter, Laurence J.
  • Applied Optics, Vol. 52, Issue 15
  • DOI: 10.1364/AO.52.003538

Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources
journal, March 2006

  • Pfeiffer, Franz; Weitkamp, Timm; Bunk, Oliver
  • Nature Physics, Vol. 2, Issue 4, p. 258-261
  • DOI: 10.1038/nphys265

Optical properties of highly compressed polystyrene: An ab initio study
journal, October 2017


Numerical simulation of ablative Rayleigh–Taylor instability
journal, April 1991

  • Gardner, John H.; Bodner, Stephen E.; Dahlburg, Jill P.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 4
  • DOI: 10.1063/1.859835

Shock-timing experiments using double-pulse laser irradiation
journal, May 2006

  • Boehly, T. R.; Vianello, E.; Miller, J. E.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2179057

Shock Hugoniot and temperature data for polystyrene obtained with quartz standard
journal, June 2009

  • Ozaki, N.; Sano, T.; Ikoma, M.
  • Physics of Plasmas, Vol. 16, Issue 6
  • DOI: 10.1063/1.3152287

Laser-induced adiabat shaping by relaxation in inertial fusion implosions
journal, January 2004

  • Anderson, K.; Betti, R.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1632903

X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
journal, July 1993

  • Henke, B. L.; Gullikson, E. M.; Davis, J. C.
  • Atomic Data and Nuclear Data Tables, Vol. 54, Issue 2, p. 181-342
  • DOI: 10.1006/adnd.1993.1013

X-ray streaked refraction enhanced radiography for inferring inflight density gradients in ICF capsule implosions
journal, October 2018

  • Dewald, E. L.; Landen, O. L.; Masse, L.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039346

Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa
journal, January 2009


Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA
journal, March 2005

  • Radha, P. B.; Goncharov, V. N.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1857530

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Characterization of National Ignitition Facility cryogenic beryllium capsules using x-ray phase contrast imaging
journal, October 2004

  • Montgomery, D. S.; Nobile, A.; Walsh, P. J.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1790054

Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium
journal, May 2011


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

A generalized scaling law for the ignition energy of inertial confinement fusion capsules
journal, January 2001


Phase-contrast radiographs of nonstained rat cerebellar specimen
journal, April 1995

  • Momose, Atsushi; Fukuda, Jun
  • Medical Physics, Vol. 22, Issue 4
  • DOI: 10.1118/1.597472

Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging: QUANTITATIVE X-RAY PROJECTION MICROSCOPY
journal, August 2002


The effects of target mounts in direct-drive implosions on OMEGA
journal, August 2009

  • Igumenshchev, I. V.; Marshall, F. J.; Marozas, J. A.
  • Physics of Plasmas, Vol. 16, Issue 8
  • DOI: 10.1063/1.3195065

Stagnation Pressure of Imploding Shells and Ignition Energy Scaling of Inertial Confinement Fusion Targets
journal, April 2001


SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output
journal, May 2007


Simulation and analysis of time-gated monochromatic radiographs of cryogenic implosions on OMEGA
journal, June 2017


Tracing rays through graded-index media: a new method
journal, January 1982

  • Sharma, Anurag; Kumar, D. Vizia; Ghatak, A. K.
  • Applied Optics, Vol. 21, Issue 6
  • DOI: 10.1364/AO.21.000984

Phase‐Sensitive X‐Ray Imaging
journal, July 2000


Phase-contrast imaging of weakly absorbing materials using hard X-rays
journal, February 1995

  • Davis, T. J.; Gao, D.; Gureyev, T. E.
  • Nature, Vol. 373, Issue 6515
  • DOI: 10.1038/373595a0

Simple solution to the Fresnel–Kirchoff diffraction integral for application to refraction-enhanced radiography
journal, January 2013

  • Koch, J. A.; Landen, O. L.; Suter, L. J.
  • Journal of the Optical Society of America A, Vol. 30, Issue 7
  • DOI: 10.1364/JOSAA.30.001460

X-ray preheating of window materials in direct-drive shock-wave timing experiments
journal, December 2006

  • Theobald, W.; Miller, J. E.; Boehly, T. R.
  • Physics of Plasmas, Vol. 13, Issue 12
  • DOI: 10.1063/1.2397581

Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications
journal, June 2009

  • Koch, Jeffrey A.; Landen, Otto L.; Kozioziemski, Bernard J.
  • Journal of Applied Physics, Vol. 105, Issue 11, Article No. 113112
  • DOI: 10.1063/1.3133092