skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactivity-Guided Interface Design in Na Metal Solid-State Batteries

Abstract

Solid-state batteries provide substantially increased safety and improved energy density when energy-dense alkali metal anodes are applied. However, most solid-state electrolytes react with alkali metals, causing a continuous increase of the cell impedance. Here, we employ a reactivity-driven strategy to improve the interfacial stability between a Na3SbS4 solid-state electrolyte and sodium metal. First-principles calculations identify a protective hydrate coating for Na3SbS4 that leads to the generation of passivating decomposition products upon contact of the electrolyte with sodium metal. The formation of this protective coating, a newly discovered hydrated phase, is achieved experimentally through exposure of Na3SbS4 to air. The buried interface is characterized using post-operando synchrotron X-ray depth profiling, providing spatially resolved evidence of the multilayered phase distribution in the Na metal symmetric cell consistent with theoretical predictions. We identify hydrates as promising for improving the metal/electrolyte interfacial stability in solid-state batteries and suggest a general strategy of interface design for this purpose.

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1506559
Alternate Identifier(s):
OSTI ID: 1604683
Grant/Contract Number:  
3F-31144; AC02-06CH11357; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Joule
Additional Journal Information:
Journal Name: Joule Journal Volume: 3 Journal Issue: 4; Journal ID: ISSN 2542-4351
Publisher:
Elsevier - Cell Press
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; solid-state batteries; metal anode; interfacial stability; first-principles; computation; high-energy density; solid electrolyte; hydrate; coating; synchrotron X-ray diffraction

Citation Formats

Tian, Yaosen, Sun, Yingzhi, Hannah, Daniel C., Xiao, Yihan, Liu, Hao, Chapman, Karena W., Bo, Shou-Hang, and Ceder, Gerbrand. Reactivity-Guided Interface Design in Na Metal Solid-State Batteries. United States: N. p., 2019. Web. https://doi.org/10.1016/j.joule.2018.12.019.
Tian, Yaosen, Sun, Yingzhi, Hannah, Daniel C., Xiao, Yihan, Liu, Hao, Chapman, Karena W., Bo, Shou-Hang, & Ceder, Gerbrand. Reactivity-Guided Interface Design in Na Metal Solid-State Batteries. United States. https://doi.org/10.1016/j.joule.2018.12.019
Tian, Yaosen, Sun, Yingzhi, Hannah, Daniel C., Xiao, Yihan, Liu, Hao, Chapman, Karena W., Bo, Shou-Hang, and Ceder, Gerbrand. Mon . "Reactivity-Guided Interface Design in Na Metal Solid-State Batteries". United States. https://doi.org/10.1016/j.joule.2018.12.019.
@article{osti_1506559,
title = {Reactivity-Guided Interface Design in Na Metal Solid-State Batteries},
author = {Tian, Yaosen and Sun, Yingzhi and Hannah, Daniel C. and Xiao, Yihan and Liu, Hao and Chapman, Karena W. and Bo, Shou-Hang and Ceder, Gerbrand},
abstractNote = {Solid-state batteries provide substantially increased safety and improved energy density when energy-dense alkali metal anodes are applied. However, most solid-state electrolytes react with alkali metals, causing a continuous increase of the cell impedance. Here, we employ a reactivity-driven strategy to improve the interfacial stability between a Na3SbS4 solid-state electrolyte and sodium metal. First-principles calculations identify a protective hydrate coating for Na3SbS4 that leads to the generation of passivating decomposition products upon contact of the electrolyte with sodium metal. The formation of this protective coating, a newly discovered hydrated phase, is achieved experimentally through exposure of Na3SbS4 to air. The buried interface is characterized using post-operando synchrotron X-ray depth profiling, providing spatially resolved evidence of the multilayered phase distribution in the Na metal symmetric cell consistent with theoretical predictions. We identify hydrates as promising for improving the metal/electrolyte interfacial stability in solid-state batteries and suggest a general strategy of interface design for this purpose.},
doi = {10.1016/j.joule.2018.12.019},
journal = {Joule},
number = 4,
volume = 3,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.joule.2018.12.019

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction
journal, October 2012

  • Wang, Jiang Wei; Liu, Xiao Hua; Mao, Scott X.
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303305c

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition
journal, August 2002


All solid state lithium ion rechargeable batteries using NASICON structured electrolyte
journal, September 2013


Advances in Structure and Property Optimizations of Battery Electrode Materials
journal, November 2017


Projector augmented-wave method
journal, December 1994


Na 3 SbS 4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
journal, July 2016

  • Banerjee, Abhik; Park, Kern Ho; Heo, Jongwook W.
  • Angewandte Chemie, Vol. 128, Issue 33
  • DOI: 10.1002/ange.201604158

Hydrate-melt electrolytes for high-energy-density aqueous batteries
journal, August 2016


Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes
journal, November 2015


Hydrogen bonds in Na3AsS4.8D2O: neutron diffraction, X-ray diffraction and vibrational spectroscopic studies
journal, February 1982

  • Mereiter, K.; Preisinger, A.; Baumgartner, O.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 38, Issue 2
  • DOI: 10.1107/S0567740882003069

Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes
journal, December 2016


Analysis of the structure and degree of crystallisation of 70Li 2 S–30P 2 S 5 glass ceramic
journal, January 2015

  • Seino, Yoshikatsu; Nakagawa, Masaru; Senga, Minoru
  • Journal of Materials Chemistry A, Vol. 3, Issue 6
  • DOI: 10.1039/C4TA04332D

A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
journal, January 1997

  • Yu, Xiaohua; Bates, J. B.; Jellison, G. E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 2, p. 524-532
  • DOI: 10.1149/1.1837443

Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3 PSe 4
journal, December 2015


Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds
journal, July 2013


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

The Inorganic Crystal Structure Database (ICSD)—Present and Future
journal, January 2004


Vacancy-Contained Tetragonal Na 3 SbS 4 Superionic Conductor
journal, April 2016


Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
journal, January 2016

  • Han, Fudong; Zhu, Yizhou; He, Xingfeng
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201501590

Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”
journal, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22108f

Electrolyte and Interface Engineering for Solid-State Sodium Batteries
journal, September 2018


Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation
journal, August 2015


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Role of Schottky Defects in Hydrogen and Metal Diffusion in NaH, MgH 2 , and NaMgH 3
journal, September 2010

  • Hao, Shiqiang; Sholl, David S.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 19
  • DOI: 10.1021/jz101118f

Fast Lithium-Ion Conducting Thin-Film Electrolytes Integrated Directly on Flexible Substrates for High-Power Solid-State Batteries
journal, November 2011

  • Ihlefeld, Jon F.; Clem, Paul G.; Doyle, Barney L.
  • Advanced Materials, Vol. 23, Issue 47, p. 5663-5667
  • DOI: 10.1002/adma.201102980

Compatibility issues between electrodes and electrolytes in solid-state batteries
journal, January 2017

  • Tian, Yaosen; Shi, Tan; Richards, William D.
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00534B

Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system
journal, May 2004


A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


A solid future for battery development
journal, September 2016


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016

  • Wang, Hui; Chen, Yan; Hood, Zachary D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201601546

Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

NASICON-Structured Materials for Energy Storage
journal, February 2017


Design of Li 1+2x Zn 1−x PS 4 , a new lithium ion conductor
journal, January 2016

  • Richards, William D.; Wang, Yan; Miara, Lincoln J.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02094A

Structural and Na-ion conduction characteristics of Na 3 PS x Se 4−x
journal, January 2016

  • Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand
  • Journal of Materials Chemistry A, Vol. 4, Issue 23
  • DOI: 10.1039/C6TA03027K

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices
journal, September 2016

  • Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.
  • Journal of Applied Crystallography, Vol. 49, Issue 5
  • DOI: 10.1107/S1600576716012632

Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Interface Stability in Solid-State Batteries
journal, December 2015


New Insights into the Interphase between the Na Metal Anode and Sulfide Solid-State Electrolytes: A Joint Experimental and Computational Study
journal, March 2018

  • Wu, Erik A.; Kompella, Christopher S.; Zhu, Zhuoying
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 12
  • DOI: 10.1021/acsami.7b19037

Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences
journal, December 2017

  • Wang, Shaofei; Xu, Henghui; Li, Wangda
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b09531

Computational Prediction and Evaluation of Solid-State Sodium Superionic Conductors Na 7 P 3 X 11 (X = O, S, Se)
journal, August 2017


The thermodynamic scale of inorganic crystalline metastability
journal, November 2016

  • Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600225

Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na 3 PS 4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries
journal, October 2016

  • Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b10119

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


    Works referencing / citing this record:

    A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries
    journal, January 2020


    First Principle Material Genome Approach for All Solid‐State Batteries
    journal, September 2019

    • Xu, Hongjie; Yu, Yuran; Wang, Zhuo
    • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 2, Issue 4
    • DOI: 10.1002/eem2.12053

    Understanding interface stability in solid-state batteries
    journal, December 2019


    Designing solid-state electrolytes for safe, energy-dense batteries
    journal, February 2020


    Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries
    journal, January 2019

    • Yu, Yuran; Wang, Zhuo; Shao, Guosheng
    • Journal of Materials Chemistry A, Vol. 7, Issue 17
    • DOI: 10.1039/c9ta02166c

    Theoretical formulation of Na 3 AO 4 X (A = S/Se, X = F/Cl) as high-performance solid electrolytes for all-solid-state sodium batteries
    journal, January 2019

    • Yu, Yuran; Wang, Zhuo; Shao, Guosheng
    • Journal of Materials Chemistry A, Vol. 7, Issue 38
    • DOI: 10.1039/c9ta08584j

    Machine learning for the modeling of interfaces in energy storage and conversion materials
    journal, July 2019