skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic structure at coarse-grained resolutions from supervised machine learning

Abstract

Computational studies aimed at understanding conformationally dependent electronic structure in soft materials require a combination of classical and quantum-mechanical simulations, for which the sampling of conformational space can be particularly demanding. Coarse-grained (CG) models provide a means of accessing relevant time scales, but CG configurations must be back-mapped into atomistic representations to perform quantum-chemical calculations, which is computationally intensive and inconsistent with the spatial resolution of the CG models. A machine learning approach, denoted as artificial neural network electronic coarse graining (ANN-ECG), is presented here in which the conformationally dependent electronic structure of a molecule is mapped directly to CG pseudo-atom configurations. By averaging over decimated degrees of freedom, ANN-ECG accelerates simulations by eliminating backmapping and repeated quantum-chemical calculations. The approach is accurate, consistent with the CG spatial resolution, and can be used to identify computationally optimal CG resolutions.

Authors:
ORCiD logo [1];  [2];  [2]; ORCiD logo [2];  [3];  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States); Univ. of Chicago, Chicago, IL (United States)
  2. Univ. of Chicago, Chicago, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Midwest Integrated Center for Computational Materials (MICCoM)
OSTI Identifier:
1506239
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 5; Journal Issue: 3; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Jackson, Nicholas E., Bowen, Alec S., Antony, Lucas W., Webb, Michael A., Vishwanath, Venkatram, and de Pablo, Juan J. Electronic structure at coarse-grained resolutions from supervised machine learning. United States: N. p., 2019. Web. doi:10.1126/sciadv.aav1190.
Jackson, Nicholas E., Bowen, Alec S., Antony, Lucas W., Webb, Michael A., Vishwanath, Venkatram, & de Pablo, Juan J. Electronic structure at coarse-grained resolutions from supervised machine learning. United States. doi:10.1126/sciadv.aav1190.
Jackson, Nicholas E., Bowen, Alec S., Antony, Lucas W., Webb, Michael A., Vishwanath, Venkatram, and de Pablo, Juan J. Fri . "Electronic structure at coarse-grained resolutions from supervised machine learning". United States. doi:10.1126/sciadv.aav1190. https://www.osti.gov/servlets/purl/1506239.
@article{osti_1506239,
title = {Electronic structure at coarse-grained resolutions from supervised machine learning},
author = {Jackson, Nicholas E. and Bowen, Alec S. and Antony, Lucas W. and Webb, Michael A. and Vishwanath, Venkatram and de Pablo, Juan J.},
abstractNote = {Computational studies aimed at understanding conformationally dependent electronic structure in soft materials require a combination of classical and quantum-mechanical simulations, for which the sampling of conformational space can be particularly demanding. Coarse-grained (CG) models provide a means of accessing relevant time scales, but CG configurations must be back-mapped into atomistic representations to perform quantum-chemical calculations, which is computationally intensive and inconsistent with the spatial resolution of the CG models. A machine learning approach, denoted as artificial neural network electronic coarse graining (ANN-ECG), is presented here in which the conformationally dependent electronic structure of a molecule is mapped directly to CG pseudo-atom configurations. By averaging over decimated degrees of freedom, ANN-ECG accelerates simulations by eliminating backmapping and repeated quantum-chemical calculations. The approach is accurate, consistent with the CG spatial resolution, and can be used to identify computationally optimal CG resolutions.},
doi = {10.1126/sciadv.aav1190},
journal = {Science Advances},
number = 3,
volume = 5,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Conformational Order in Aggregates of Conjugated Polymers
journal, May 2015

  • Jackson, Nicholas E.; Kohlstedt, Kevin L.; Savoie, Brett M.
  • Journal of the American Chemical Society, Vol. 137, Issue 19
  • DOI: 10.1021/jacs.5b00493

Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions
journal, June 2018

  • Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5024577

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Graph-Based Approach to Systematic Molecular Coarse-Graining
journal, November 2018

  • Webb, Michael A.; Delannoy, Jean-Yves; de Pablo, Juan J.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 2
  • DOI: 10.1021/acs.jctc.8b00920

Charge Transport in Organic Semiconductors
journal, April 2007

  • Coropceanu, Veaceslav; Cornil, Jérôme; da Silva Filho, Demetrio A.
  • Chemical Reviews, Vol. 107, Issue 4
  • DOI: 10.1021/cr050140x

The ORCA program system: The ORCA program system
journal, June 2011

  • Neese, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.81

Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
journal, April 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00099

Conformational disorder of conjugated polymers: Implications for optical properties
journal, January 1996

  • Yaliraki, Sophia N.; Silbey, Robert J.
  • The Journal of Chemical Physics, Vol. 104, Issue 4
  • DOI: 10.1063/1.470782

Machine learning unifies the modeling of materials and molecules
journal, December 2017

  • Bartók, Albert P.; De, Sandip; Poelking, Carl
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.1701816

Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells
journal, March 2018

  • Wu, Qinghe; Zhao, Donglin; Goldey, Matthew B.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 12
  • DOI: 10.1021/acsami.7b18717

Modeling Charge Transport in Organic Photovoltaic Materials
journal, November 2009

  • Nelson, Jenny; Kwiatkowski, Joe J.; Kirkpatrick, James
  • Accounts of Chemical Research, Vol. 42, Issue 11
  • DOI: 10.1021/ar900119f

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Bypassing the Kohn-Sham equations with machine learning
journal, October 2017


Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations
journal, March 2014

  • Kubas, Adam; Hoffmann, Felix; Heck, Alexander
  • The Journal of Chemical Physics, Vol. 140, Issue 10
  • DOI: 10.1063/1.4867077

Tight binding model of conformational disorder effects on the optical absorption spectrum of polythiophenes
journal, January 2016

  • Bombile, Joel H.; Janik, Michael J.; Milner, Scott T.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 18
  • DOI: 10.1039/C6CP00832A

Intramolecular Charge Transport along Isolated Chains of Conjugated Polymers:  Effect of Torsional Disorder and Polymerization Defects
journal, August 2002

  • Grozema, Ferdinand C.; van Duijnen, Piet Th.; Berlin, Yuri A.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 32
  • DOI: 10.1021/jp021114v

Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview
journal, June 2008


Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells
journal, January 2012

  • Marrocchi, Assunta; Lanari, Daniela; Facchetti, Antonio
  • Energy & Environmental Science, Vol. 5, Issue 9
  • DOI: 10.1039/c2ee22129b

For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%
journal, May 2010

  • Liang, Yongye; Xu, Zheng; Xia, Jiangbin
  • Advanced Materials, Vol. 22, Issue 20, p. E135-E138
  • DOI: 10.1002/adma.200903528

Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
conference, December 2015

  • He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing
  • 2015 IEEE International Conference on Computer Vision (ICCV)
  • DOI: 10.1109/ICCV.2015.123

Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors
journal, August 2011

  • Rühle, Victor; Lukyanov, Alexander; May, Falk
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 10
  • DOI: 10.1021/ct200388s

Machine Learning Force Fields: Construction, Validation, and Outlook
journal, December 2016


Versatile Object-Oriented Toolkit for Coarse-Graining Applications
journal, November 2009

  • Rühle, Victor; Junghans, Christoph; Lukyanov, Alexander
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 12
  • DOI: 10.1021/ct900369w

NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
journal, September 2010

  • Valiev, M.; Bylaska, E. J.; Govind, N.
  • Computer Physics Communications, Vol. 181, Issue 9, p. 1477-1489
  • DOI: 10.1016/j.cpc.2010.04.018

Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Charge Transport in Molecular Materials: An Assessment of Computational Methods
journal, June 2017


Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
journal, January 2018

  • Gómez-Bombarelli, Rafael; Wei, Jennifer N.; Duvenaud, David
  • ACS Central Science, Vol. 4, Issue 2
  • DOI: 10.1021/acscentsci.7b00572

Geometry and Electronic Coupling in Perylenediimide Stacks: Mapping Structure−Charge Transport Relationships
journal, February 2010

  • Vura-Weis, Josh; Ratner, Mark A.; Wasielewski, Michael R.
  • Journal of the American Chemical Society, Vol. 132, Issue 6
  • DOI: 10.1021/ja907761e

Relative orientation
journal, January 1990

  • Horn, Berthold K. P.
  • International Journal of Computer Vision, Vol. 4, Issue 1
  • DOI: 10.1007/BF00137443

25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon
journal, January 2014


Modeling of Organic Light Emitting Diodes: From Molecular to Device Properties
journal, January 2015

  • Kordt, Pascal; van der Holst, Jeroen J. M.; Al Helwi, Mustapha
  • Advanced Functional Materials, Vol. 25, Issue 13
  • DOI: 10.1002/adfm.201403004

Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations
journal, March 2017

  • Alessandri, Riccardo; Uusitalo, Jaakko J.; de Vries, Alex H.
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.6b11717