skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution

Abstract

Engineering catalytic sites at the atomic level provides an opportunity to understand the catalyst’s active sites, which is vital to the development of improved catalysts. Here we show a reliable and tunable polyoxometalate template-based synthetic strategy to atomically engineer metal doping sites onto metallic 1T-MoS2, using Anderson-type polyoxometalates as precursors. Benefiting from engineering nickel and oxygen atoms, the optimized electrocatalyst shows great enhancement in the hydrogen evolution reaction with a positive onset potential of ~ 0 V and a low overpotential of –46 mV in alkaline electrolyte, comparable to platinum-based catalysts. First-principles calculations reveal co-doping nickel and oxygen into 1T-MoS2 assists the process of water dissociation and hydrogen generation from their intermediate states. This research will expand on the ability to improve the activities of various catalysts by precisely engineering atomic activation sites to achieve significant electronic modulations and improve atomic utilization efficiencies.

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [5];  [5];  [2];  [6];  [7];  [7];  [6];  [6];  [6];  [4];  [4]; ORCiD logo [2];  [6];  [7]
  1. Tsinghua Univ., Beijing (People's Republic of China); San Diego State Univ., San Diego, CA (United States)
  2. Jilin Univ., Changchun (People's Republic of China)
  3. Stanford Univ., Stanford, CA (United States)
  4. Univ. of California, Irvine, CA (United States)
  5. Marquette Univ., Milwaukee, WI (United States)
  6. Tsinghua Univ., Beijing (People's Republic of China)
  7. San Diego State Univ., San Diego, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1506174
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Huang, Yichao, Sun, Yuanhui, Zheng, Xueli, Aoki, Toshihiro, Pattengale, Brian, Huang, Jier, He, Xin, Bian, Wei, Younan, Sabrina, Williams, Nicholas, Hu, Jun, Ge, Jingxuan, Pu, Ning, Yan, Xingxu, Pan, Xiaoqing, Zhang, Lijun, Wei, Yongge, and Gu, Jing. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. United States: N. p., 2019. Web. doi:10.1038/s41467-019-08877-9.
Huang, Yichao, Sun, Yuanhui, Zheng, Xueli, Aoki, Toshihiro, Pattengale, Brian, Huang, Jier, He, Xin, Bian, Wei, Younan, Sabrina, Williams, Nicholas, Hu, Jun, Ge, Jingxuan, Pu, Ning, Yan, Xingxu, Pan, Xiaoqing, Zhang, Lijun, Wei, Yongge, & Gu, Jing. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. United States. doi:10.1038/s41467-019-08877-9.
Huang, Yichao, Sun, Yuanhui, Zheng, Xueli, Aoki, Toshihiro, Pattengale, Brian, Huang, Jier, He, Xin, Bian, Wei, Younan, Sabrina, Williams, Nicholas, Hu, Jun, Ge, Jingxuan, Pu, Ning, Yan, Xingxu, Pan, Xiaoqing, Zhang, Lijun, Wei, Yongge, and Gu, Jing. Thu . "Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution". United States. doi:10.1038/s41467-019-08877-9. https://www.osti.gov/servlets/purl/1506174.
@article{osti_1506174,
title = {Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution},
author = {Huang, Yichao and Sun, Yuanhui and Zheng, Xueli and Aoki, Toshihiro and Pattengale, Brian and Huang, Jier and He, Xin and Bian, Wei and Younan, Sabrina and Williams, Nicholas and Hu, Jun and Ge, Jingxuan and Pu, Ning and Yan, Xingxu and Pan, Xiaoqing and Zhang, Lijun and Wei, Yongge and Gu, Jing},
abstractNote = {Engineering catalytic sites at the atomic level provides an opportunity to understand the catalyst’s active sites, which is vital to the development of improved catalysts. Here we show a reliable and tunable polyoxometalate template-based synthetic strategy to atomically engineer metal doping sites onto metallic 1T-MoS2, using Anderson-type polyoxometalates as precursors. Benefiting from engineering nickel and oxygen atoms, the optimized electrocatalyst shows great enhancement in the hydrogen evolution reaction with a positive onset potential of ~ 0 V and a low overpotential of –46 mV in alkaline electrolyte, comparable to platinum-based catalysts. First-principles calculations reveal co-doping nickel and oxygen into 1T-MoS2 assists the process of water dissociation and hydrogen generation from their intermediate states. This research will expand on the ability to improve the activities of various catalysts by precisely engineering atomic activation sites to achieve significant electronic modulations and improve atomic utilization efficiencies.},
doi = {10.1038/s41467-019-08877-9},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 2 Fig. 2: Structure characterizations of NiO@1T-MoS2. a SEM image, scale bar: 200 nm (inset: low magnification SEM image, scale bar: 5 μm). b TEM image (scale bar: 20 nm). c EDX mappings (scale bar: 1 μm). d High-angle annular dark-field (HAADF) STEM image (scale bar: 5 nm). e Aberration-corrected atomicmore » resolution HAADF-STEM image (scale bar: 0.5 nm). The white dotted hexagons show the NiMo6 units in NiO@1T-MoS2 (green: Mo; orange: Ni). f Intensity profiles along the lines indicated in image e« less

Save / Share:

Works referenced in this record:

Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes
journal, February 2017


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets
journal, May 2013

  • Lukowski, Mark A.; Daniel, Andrew S.; Meng, Fei
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404523s

Formation of Ni-Co-MoS 2 Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution
journal, August 2016


Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution
journal, September 2018


Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution
journal, January 2015


Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review
journal, April 2008


The Crystal Structure of Molybdenite
journal, June 1923

  • Dickinson, Roscoe G.; Pauling, Linus
  • Journal of the American Chemical Society, Vol. 45, Issue 6
  • DOI: 10.1021/ja01659a020

Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides
journal, October 2015


Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
journal, June 2015

  • Wang, Haotian; Lee, Hyun-Wook; Deng, Yong
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8261

Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications
journal, January 2019


Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting
journal, January 2016

  • Xu, You; Kraft, Markus; Xu, Rong
  • Chemical Society Reviews, Vol. 45, Issue 11
  • DOI: 10.1039/C5CS00729A

In Situ X-Ray Absorption Spectroscopic Studies of Nickel Oxide Electrodes
journal, January 1990

  • Pandya, K. I.
  • Journal of The Electrochemical Society, Vol. 137, Issue 2
  • DOI: 10.1149/1.2086450

Phosphorus-Modified Tungsten Nitride/Reduced Graphene Oxide as a High-Performance, Non-Noble-Metal Electrocatalyst for the Hydrogen Evolution Reaction
journal, March 2015

  • Yan, Haijing; Tian, Chungui; Wang, Lei
  • Angewandte Chemie International Edition, Vol. 54, Issue 21
  • DOI: 10.1002/anie.201501419

Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution
journal, January 2016

  • Wang, Xu-Dong; Xu, Yang-Fan; Rao, Hua-Shang
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03801D

Alternative energy technologies
journal, November 2001

  • Dresselhaus, M. S.; Thomas, I. L.
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104599

Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review
journal, September 2005

  • Haryanto, Agus; Fernando, Sandun; Murali, Naveen
  • Energy & Fuels, Vol. 19, Issue 5
  • DOI: 10.1021/ef0500538

Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Understanding Structure-Dependent Catalytic Performance of Nickel Selenides for Electrochemical Water Oxidation
journal, December 2016


Porous MoO 2 Nanosheets as Non-noble Bifunctional Electrocatalysts for Overall Water Splitting
journal, March 2016


Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution
journal, July 2017


Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts
journal, January 2013

  • Chen, Wei-Fu; Muckerman, James T.; Fujita, Etsuko
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc44076a

The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen
journal, June 2016

  • Voiry, Damien; Fullon, Raymond; Yang, Jieun
  • Nature Materials, Vol. 15, Issue 9
  • DOI: 10.1038/nmat4660

Structure Re-determination and Superconductivity Observation of Bulk 1T MoS 2
journal, January 2018

  • Fang, Yuqiang; Pan, Jie; He, Jianqiao
  • Angewandte Chemie International Edition, Vol. 57, Issue 5
  • DOI: 10.1002/anie.201710512

Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
journal, January 2011

  • Biesinger, Mark C.; Payne, Brad P.; Grosvenor, Andrew P.
  • Applied Surface Science, Vol. 257, Issue 7, p. 2717-2730
  • DOI: 10.1016/j.apsusc.2010.10.051

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

The Synthesis of Nanostructured Ni 5 P 4 Films and their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting
journal, June 2015

  • Ledendecker, Marc; Krick Calderón, Sandra; Papp, Christian
  • Angewandte Chemie International Edition, Vol. 54, Issue 42
  • DOI: 10.1002/anie.201502438

Hydrogen as an energy carrier: Prospects and challenges
journal, June 2012


Kinetic Study of Hydrogen Evolution Reaction over Strained MoS 2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy
journal, April 2016

  • Li, Hong; Du, Minshu; Mleczko, Michal J.
  • Journal of the American Chemical Society, Vol. 138, Issue 15
  • DOI: 10.1021/jacs.6b01377

Sustainable Hydrogen Production
journal, August 2004


Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Controllable Disorder Engineering in Oxygen-Incorporated MoS 2 Ultrathin Nanosheets for Efficient Hydrogen Evolution
journal, November 2013

  • Xie, Junfeng; Zhang, Jiajia; Li, Shuang
  • Journal of the American Chemical Society, Vol. 135, Issue 47
  • DOI: 10.1021/ja408329q

Structure of Nickel Oxide
journal, September 1943


Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands
journal, March 2008

  • Hao, Jian; Xia, Yun; Wang, Longsheng
  • Angewandte Chemie International Edition, Vol. 47, Issue 14
  • DOI: 10.1002/anie.200704546

Phosphorus-Mo 2 C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation
journal, January 2017

  • Shi, Zhangping; Nie, Kaiqi; Shao, Zheng-Jiang
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00388A

Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction
journal, February 2016

  • Geng, Xiumei; Sun, Weiwei; Wu, Wei
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10672

Raman study and lattice dynamics of single molecular layers of MoS 2
journal, August 1991


High-Performance Hydrogen Evolution from MoS 2(1- x ) P x Solid Solution
journal, December 2015

  • Ye, Ruquan; del Angel-Vicente, Paz; Liu, Yuanyue
  • Advanced Materials, Vol. 28, Issue 7
  • DOI: 10.1002/adma.201504866

Hydrogen evolution by a metal-free electrocatalyst
journal, April 2014

  • Zheng, Yao; Jiao, Yan; Zhu, Yihan
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4783

Engineering water dissociation sites in MoS 2 nanosheets for accelerated electrocatalytic hydrogen production
journal, January 2016

  • Zhang, Jian; Wang, Tao; Liu, Pan
  • Energy & Environmental Science, Vol. 9, Issue 9
  • DOI: 10.1039/C6EE01786J

A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals
journal, March 2010


All The Catalytic Active Sites of MoS 2 for Hydrogen Evolution
journal, December 2016

  • Li, Guoqing; Zhang, Du; Qiao, Qiao
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b05940

Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2
journal, July 2012

  • Eda, Goki; Fujita, Takeshi; Yamaguchi, Hisato
  • ACS Nano, Vol. 6, Issue 8, p. 7311-7317
  • DOI: 10.1021/nn302422x

Polyoxometalate water oxidation catalysts and the production of green fuel
journal, January 2012

  • Lv, Hongjin; Geletii, Yurii V.; Zhao, Chongchao
  • Chemical Society Reviews, Vol. 41, Issue 22, p. 7572-7589
  • DOI: 10.1039/c2cs35292c

3D Nitrogen-Anion-Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting
journal, June 2017

  • Chen, Pengzuo; Zhou, Tianpei; Zhang, Mengxing
  • Advanced Materials, Vol. 29, Issue 30
  • DOI: 10.1002/adma.201701584

Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C
journal, January 2017

  • Ma, Yuan-Yuan; Wu, Cai-Xia; Feng, Xiao-Jia
  • Energy & Environmental Science, Vol. 10, Issue 3
  • DOI: 10.1039/C6EE03768B

Interface Engineering of MoS 2 /Ni 3 S 2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity
journal, April 2016

  • Zhang, Jian; Wang, Tao; Pohl, Darius
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201602237

Carbon-based metal-free catalysts
journal, September 2016


Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution
journal, April 2017

  • Tsai, Charlie; Li, Hong; Park, Sangwook
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15113

Ab Initio Study of the H2–H2S/MoS2 Gas–Solid Interface: The Nature of the Catalytically Active Sites
journal, January 2000


Tuning the MoS 2 Edge-Site Activity for Hydrogen Evolution via Support Interactions
journal, February 2014

  • Tsai, Charlie; Abild-Pedersen, Frank; Nørskov, Jens K.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404444k

Anderson-type heteropolyanions of molybdenum(VI) and tungsten(VI)
journal, January 1987


Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis
journal, February 2017

  • Wang, Pengtang; Zhang, Xu; Zhang, Jin
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14580

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation
journal, February 2012


Hydrogen evolution: Guiding principles
journal, September 2016


Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Energy Level Engineering of MoS 2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction
journal, October 2017

  • Shi, Yi; Zhou, Yue; Yang, Dong-Rui
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b08881

Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction
journal, November 2015

  • Staszak-Jirkovský, Jakub; Malliakas, Christos D.; Lopes, Pietro P.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4481

A graded catalytic–protective layer for an efficient and stable water-splitting photocathode
journal, January 2017


    Works referencing / citing this record:

    Self-supported MoP nanocrystals embedded in N,P-codoped carbon nanofibers via a polymer-confinement route for electrocatalytic hydrogen production
    journal, January 2019

    • Ren, Jin-Tao; Chen, Lei; Weng, Chen-Chen
    • Materials Chemistry Frontiers, Vol. 3, Issue 9
    • DOI: 10.1039/c9qm00409b

    Self-supported MoP nanocrystals embedded in N,P-codoped carbon nanofibers via a polymer-confinement route for electrocatalytic hydrogen production
    journal, January 2019

    • Ren, Jin-Tao; Chen, Lei; Weng, Chen-Chen
    • Materials Chemistry Frontiers, Vol. 3, Issue 9
    • DOI: 10.1039/c9qm00409b

    Heterometallic multinuclear nodes directing MOF electronic behavior
    journal, January 2020

    • Ejegbavwo, Otega A.; Berseneva, Anna A.; Martin, Corey R.
    • Chemical Science, Vol. 11, Issue 28
    • DOI: 10.1039/d0sc03053h

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.