skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance

Abstract

Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [2];  [4];  [5];  [5];  [6];  [7];  [8];  [2];  [2];  [9];  [10];  [11];  [11];  [12];  [13]; ORCiD logo [14];  [8] more »;  [8];  [5];  [5] « less
  1. Florida State Univ., Tallahassee, FL (United States); The Ohio State Univ., Columbus, OH (United States)
  2. Duke University Wetland Center, Nicholas School of the Environment, Durham, NC (United States)
  3. University of Potsdam (Germany); National Museum of Natural History, Washington, DC (United States)
  4. Univ. of Minnesota, Minneapolis, MN (United States)
  5. Florida State Univ., Tallahassee, FL (United States)
  6. Singapore-MIT Alliance for Research and Technology (Singapore)
  7. The Ohio State Univ., Columbus, OH (United States)
  8. Lebanese University, Beirut (Lebanon)
  9. Max Planck Institute for Biogeochemistry, Jena (Germany)
  10. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  11. Univ. of Arizona, Tucson, AZ (United States)
  12. McGill Univ., Montreal, QC (Canada)
  13. Univ. of Montreal, Quebec (Canada)
  14. North Carolina State Univ., Raleigh, NC (United States)
Publication Date:
Research Org.:
Univ. of Arizona, Tucson, AZ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1506113
Grant/Contract Number:  
SC0010580; SC0012272; SC0016440; SC0004632; SC0012088
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES

Citation Formats

Hodgkins, Suzanne B., Richardson, Curtis J., Dommain, René, Wang, Hongjun, Glaser, Paul H., Verbeke, Brittany, Winkler, B. Rose, Cobb, Alexander R., Rich, Virginia I., Missilmani, Malak, Flanagan, Neal, Ho, Mengchi, Hoyt, Alison M., Harvey, Charles F., Vining, S. Rose, Hough, Moira A., Moore, Tim R., Richard, Pierre J. H., De La Cruz, Florentino B., Toufaily, Joumana, Hamdan, Rasha, Cooper, William T., and Chanton, Jeffrey P. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. United States: N. p., 2018. Web. doi:10.1038/s41467-018-06050-2.
Hodgkins, Suzanne B., Richardson, Curtis J., Dommain, René, Wang, Hongjun, Glaser, Paul H., Verbeke, Brittany, Winkler, B. Rose, Cobb, Alexander R., Rich, Virginia I., Missilmani, Malak, Flanagan, Neal, Ho, Mengchi, Hoyt, Alison M., Harvey, Charles F., Vining, S. Rose, Hough, Moira A., Moore, Tim R., Richard, Pierre J. H., De La Cruz, Florentino B., Toufaily, Joumana, Hamdan, Rasha, Cooper, William T., & Chanton, Jeffrey P. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. United States. doi:10.1038/s41467-018-06050-2.
Hodgkins, Suzanne B., Richardson, Curtis J., Dommain, René, Wang, Hongjun, Glaser, Paul H., Verbeke, Brittany, Winkler, B. Rose, Cobb, Alexander R., Rich, Virginia I., Missilmani, Malak, Flanagan, Neal, Ho, Mengchi, Hoyt, Alison M., Harvey, Charles F., Vining, S. Rose, Hough, Moira A., Moore, Tim R., Richard, Pierre J. H., De La Cruz, Florentino B., Toufaily, Joumana, Hamdan, Rasha, Cooper, William T., and Chanton, Jeffrey P. Fri . "Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance". United States. doi:10.1038/s41467-018-06050-2. https://www.osti.gov/servlets/purl/1506113.
@article{osti_1506113,
title = {Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance},
author = {Hodgkins, Suzanne B. and Richardson, Curtis J. and Dommain, René and Wang, Hongjun and Glaser, Paul H. and Verbeke, Brittany and Winkler, B. Rose and Cobb, Alexander R. and Rich, Virginia I. and Missilmani, Malak and Flanagan, Neal and Ho, Mengchi and Hoyt, Alison M. and Harvey, Charles F. and Vining, S. Rose and Hough, Moira A. and Moore, Tim R. and Richard, Pierre J. H. and De La Cruz, Florentino B. and Toufaily, Joumana and Hamdan, Rasha and Cooper, William T. and Chanton, Jeffrey P.},
abstractNote = {Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.},
doi = {10.1038/s41467-018-06050-2},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Limits to Peat Bog Growth
journal, January 1984

  • Clymo, R. S.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 303, Issue 1117
  • DOI: 10.1098/rstb.1984.0002

Latitude, productivity and species richness: Latitude and productivity
journal, October 2014

  • Gillman, Len N.; Wright, Shane D.; Cusens, Jarrod
  • Global Ecology and Biogeography, Vol. 24, Issue 1
  • DOI: 10.1111/geb.12245

Determination of Sources of Organic Matter in Solid Waste by Analysis of Phenolic Copper Oxide Oxidation Products of Lignin
journal, February 2016


Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin: CLIMATIC SHIFTS DRIVE METHANE PRODUCTION
journal, November 2016

  • Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.
  • Global Biogeochemical Cycles, Vol. 30, Issue 11
  • DOI: 10.1002/2016GB005397

Climate-related changes in peatland carbon accumulation during the last millennium
journal, January 2013


Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota
journal, May 2003

  • Gorham, Eville; Janssens, Joannes A.; Glaser, Paul H.
  • Canadian Journal of Botany, Vol. 81, Issue 5
  • DOI: 10.1139/b03-036

Carbon storage and release in Indonesian peatlands since the last deglaciation
journal, August 2014


Rapid determination of lignocellulose by diffuse reflectance Fourier transform infrared spectrometry
journal, December 1985

  • Schultz, Tor P.; Templeton, M. Curry.; McGinnis, Gary D.
  • Analytical Chemistry, Vol. 57, Issue 14
  • DOI: 10.1021/ac00291a027

FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands
journal, February 2008

  • Artz, Rebekka R. E.; Chapman, Stephen J.; Jean Robertson, A. H.
  • Soil Biology and Biochemistry, Vol. 40, Issue 2
  • DOI: 10.1016/j.soilbio.2007.09.019

Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis
journal, October 2010


Surface production fuels deep heterotrophic respiration in northern peatlands: HETEROTROPHIC RESPIRATION IN PEATLANDS
journal, December 2013

  • Elizabeth Corbett, J.; Burdige, David J.; Tfaily, Malak M.
  • Global Biogeochemical Cycles, Vol. 27, Issue 4
  • DOI: 10.1002/2013GB004677

Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming
journal, May 1991

  • Gorham, Eville
  • Ecological Applications, Vol. 1, Issue 2
  • DOI: 10.2307/1941811

Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland
journal, July 2010

  • Sjögersten, Sofie; Cheesman, Alexander W.; Lopez, Omar
  • Biogeochemistry, Vol. 104, Issue 1-3
  • DOI: 10.1007/s10533-010-9493-7

Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands: PLANT-MEDIATED OM AND NUTRIENT CYCLING
journal, May 2003

  • Laiho, Raija; Vasander, Harri; Penttilä, Timo
  • Global Biogeochemical Cycles, Vol. 17, Issue 2
  • DOI: 10.1029/2002GB002015

Nutrient Effects on Stand Structure, Resorption Efficiency, and Secondary Compounds in Everglades Sawgrass
journal, October 1999


FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi
journal, October 2003


Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production
journal, April 2014

  • Hodgkins, S. B.; Tfaily, M. M.; McCalley, C. K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1314641111

Global and regional importance of the tropical peatland carbon pool: TROPICAL PEATLAND CARBON POOL
journal, January 2011


Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland: CARBON FLUXES IN A NEOTROPICAL PEATLAND
journal, June 2011


The use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae
journal, April 2010

  • Wagner, Heiko; Liu, Zhixin; Langner, Uwe
  • Journal of Biophotonics, Vol. 3, Issue 8-9
  • DOI: 10.1002/jbio.201000019

Herbivory and Plant Defenses in Tropical Forests
journal, November 1996


Soil warming and organic carbon content
journal, December 2000

  • Davidson, Eric A.; Trumbore, Susan E.; Amundson, Ronald
  • Nature, Vol. 408, Issue 6814
  • DOI: 10.1038/35048672

Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated
journal, August 2011


Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia): Carbon accumulation in tip-up pools
journal, April 2015

  • Dommain, René; Cobb, Alexander R.; Joosten, Hans
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 4
  • DOI: 10.1002/2014JG002796

How does fire affect the nature and stability of soil organic nitrogen and carbon? A review
journal, March 2007


Comparison of plant litter and peat decomposition changes with permafrost thaw in a subarctic peatland
journal, April 2017


Regional ground-water flow modeling of the Glacial Lake Agassiz Peatlands, Minnesota
journal, March 2001


Production of methane and carbon dioxide in peatland ecosystems across North America: Effects of temperature, aeration, and organic chemistry of peat
journal, October 1997

  • Yavitt, Joseph B.; Williams, Christopher J.; Wieder, R. Kelman
  • Geomicrobiology Journal, Vol. 14, Issue 4
  • DOI: 10.1080/01490459709378054

Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy
journal, January 1997

  • Baldock, J. A.; Oades, J. M.; Nelson, P. N.
  • Soil Research, Vol. 35, Issue 5
  • DOI: 10.1071/S97004

Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?
journal, July 2015


A mechanism to explain the preservation of leaf litter lenses in coals derived from raised mires
journal, June 1999


Origin, composition, and transformation of dissolved organic matter in tropical peatlands
journal, July 2014


Effects of fires on the chemical and petrographic composition of peat in the Snuggedy Swamp, South Carolina
journal, April 1993

  • Rollins, Michael S.; Cohen, Arthur D.; Durig, James R.
  • International Journal of Coal Geology, Vol. 22, Issue 2
  • DOI: 10.1016/0166-5162(93)90020-B

Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost: C Balance of Permafrost Peat
journal, February 2017

  • Wilson, R. M.; Fitzhugh, L.; Whiting, G. J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 122, Issue 2
  • DOI: 10.1002/2016JG003600

Long-term sensitivity of soil carbon turnover to warming
journal, January 2005

  • Knorr, W.; Prentice, I. C.; House, J. I.
  • Nature, Vol. 433, Issue 7023
  • DOI: 10.1038/nature03226

Dual controls on carbon loss during drought in peatlands
journal, May 2015

  • Wang, Hongjun; Richardson, Curtis J.; Ho, Mengchi
  • Nature Climate Change, Vol. 5, Issue 6
  • DOI: 10.1038/nclimate2643

Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation
journal, August 2013


Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy
journal, January 2004

  • Pandey, K. K.; Pitman, A. J.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 42, Issue 10
  • DOI: 10.1002/pola.20071

Greenhouse gas fluxes from tropical peatlands in south-east Asia: GREENHOUSE GAS FLUXES FROM TROPICAL PEATLANDS
journal, July 2009


Thawing sub-arctic permafrost: Effects on vegetation and methane emissions
journal, January 2004


Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: implications for carbon release
journal, October 2012


Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia
journal, January 2012


Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification: Organic matter dynamics
journal, April 2014

  • Tfaily, Malak M.; Cooper, William T.; Kostka, Joel E.
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 4
  • DOI: 10.1002/2013JG002492

Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing
journal, December 2006


The Patterned Mires of the Red Lake Peatland, Northern Minnesota: Vegetation, Water Chemistry and Landforms
journal, July 1981

  • Glaser, Paul H.; Wheeler, Gerald A.; Gorham, Eville
  • The Journal of Ecology, Vol. 69, Issue 2
  • DOI: 10.2307/2259685

Tropical Blackwater Rivers, Animals, and Mast Fruiting by the Dipterocarpaceae
journal, July 1974


Humic-rich peat extracts inhibit sulfate reduction, methanogenesis, and anaerobic respiration but not acetogenesis in peat soils of a temperate bog
journal, December 2010


On Tropical Forests and Their Pests
journal, January 2014


An enzymic 'latch' on a global carbon store
journal, January 2001

  • Freeman, Chris; Ostle, Nick; Kang, Hojeong
  • Nature, Vol. 409, Issue 6817
  • DOI: 10.1038/35051650

Age, extent and carbon storage of the central Congo Basin peatland complex
journal, January 2017

  • Dargie, Greta C.; Lewis, Simon L.; Lawson, Ian T.
  • Nature, Vol. 542, Issue 7639
  • DOI: 10.1038/nature21048

Piston Corers for Peat and Lake Sediments
journal, April 1984

  • Wright, H. E.; Mann, D. H.; Glaser, P. H.
  • Ecology, Vol. 65, Issue 2
  • DOI: 10.2307/1941430

Temperature and peat type control CO 2 and CH 4 production in Alaskan permafrost peats
journal, April 2014

  • Treat, C. C.; Wollheim, W. M.; Varner, R. K.
  • Global Change Biology, Vol. 20, Issue 8
  • DOI: 10.1111/gcb.12572

Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland
journal, August 2016

  • Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.
  • Geochimica et Cosmochimica Acta, Vol. 187
  • DOI: 10.1016/j.gca.2016.05.015

Annual carbon gas budget for a subarctic peatland, Northern Sweden
journal, January 2010

  • Bäckstrand, K.; Crill, P. M.; Jackowicz-Korczyñski, M.
  • Biogeosciences, Vol. 7, Issue 1
  • DOI: 10.5194/bg-7-95-2010

Determination of Lignin Content of Eucalyptus globulus Wood Using FTIR Spectroscopy
journal, January 1998


Methane dynamics regulated by microbial community response to permafrost thaw
journal, October 2014

  • McCalley, Carmody K.; Woodcroft, Ben J.; Hodgkins, Suzanne B.
  • Nature, Vol. 514, Issue 7523
  • DOI: 10.1038/nature13798

A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation
journal, January 2010

  • Frolking, S.; Roulet, N. T.; Tuittila, E.
  • Earth System Dynamics, Vol. 1, Issue 1
  • DOI: 10.5194/esd-1-1-2010

Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro
journal, April 2010


Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability
journal, April 2011


Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: Rates, drivers, and sources of error: EVERGLADES CARBON AND SEDIMENT
journal, September 2012

  • Glaser, Paul H.; Volin, John C.; Givnish, Thomas J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G3
  • DOI: 10.1029/2011JG001821

Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region: SOM COMPOSITION AND FIRE SEVERITY
journal, June 2015

  • Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 6
  • DOI: 10.1002/2015JG002959

Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
journal, June 2011


Discovery of a novel methanogen prevalent in thawing permafrost
journal, February 2014

  • Mondav, Rhiannon; Woodcroft, Ben J.; Kim, Eun-Hae
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4212

Biodegradability of Municipal Solid Waste Components in Laboratory-Scale Landfills
journal, March 1997

  • Eleazer, William E.; Odle, William S.; Wang, Yu-Sheng
  • Environmental Science & Technology, Vol. 31, Issue 3
  • DOI: 10.1021/es9606788

Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms
journal, October 2013

  • Glaser, P. H.; Hansen, B. C. S.; Donovan, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 43
  • DOI: 10.1073/pnas.1222239110

Regulation of Nitrogen Removal and Retention in Sphagnum bogs and Other Peatlands
journal, March 1988


Degradation of natural organic matter: A thermodynamic analysis
journal, April 2011

  • LaRowe, Douglas E.; Van Cappellen, Philippe
  • Geochimica et Cosmochimica Acta, Vol. 75, Issue 8
  • DOI: 10.1016/j.gca.2011.01.020

Sensitivity of peatland carbon loss to organic matter quality: PEAT QUALITY AND CARBON LOSS
journal, July 2012

  • Leifeld, Jens; Steffens, Markus; Galego-Sala, Angela
  • Geophysical Research Letters, Vol. 39, Issue 14
  • DOI: 10.1029/2012GL051856

Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature
journal, January 2018

  • Bader, Cédric; Müller, Moritz; Schulin, Rainer
  • Biogeosciences, Vol. 15, Issue 3
  • DOI: 10.5194/bg-15-703-2018

Stability of peatland carbon to rising temperatures
journal, December 2016

  • Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.
  • Nature Communications, Vol. 7, Article No. 13723
  • DOI: 10.1038/ncomms13723

The Distribution and Stable Carbon Isotopic Composition of Dissolved Organic Carbon in Estuaries
journal, March 1994

  • Peterson, Bruce; Fry, Brian; Hullar, Meredith
  • Estuaries, Vol. 17, Issue 1
  • DOI: 10.2307/1352560

    Works referencing / citing this record:

    Carbon Chemistry of Intact Versus Chronically Drained Peatlands in the Southeastern USA
    journal, September 2019

    • Stricker, C. A.; Drexler, J. Z.; Thorn, K. A.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 9
    • DOI: 10.1029/2019jg005079