skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

Abstract

We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydratebearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

Authors:
 [1];  [2];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Technical Univ. of Madrid, Madrid (Spain)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1505593
Alternate Identifier(s):
OSTI ID: 1430772
Grant/Contract Number:  
FE0013999; SC0018357; FE0013999 and DE-SC0018357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 14; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Fu, Xiaojing, Cueto-Felgueroso, Luis, and Juanes, Ruben. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface. United States: N. p., 2018. Web. doi:10.1103/physrevlett.120.144501.
Fu, Xiaojing, Cueto-Felgueroso, Luis, & Juanes, Ruben. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface. United States. doi:10.1103/physrevlett.120.144501.
Fu, Xiaojing, Cueto-Felgueroso, Luis, and Juanes, Ruben. Mon . "Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface". United States. doi:10.1103/physrevlett.120.144501. https://www.osti.gov/servlets/purl/1505593.
@article{osti_1505593,
title = {Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface},
author = {Fu, Xiaojing and Cueto-Felgueroso, Luis and Juanes, Ruben},
abstractNote = {We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydratebearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.},
doi = {10.1103/physrevlett.120.144501},
journal = {Physical Review Letters},
number = 14,
volume = 120,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Burning of solid (white) methane hydrate (source: USGS). (b) Isobaric methane-water T–χ phase diagram adapted from [5,6].

Save / Share:

Works referenced in this record:

Phase field simulation of liquid phase separation with fluid flow
journal, December 2005


Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations
journal, December 2015

  • Liu, Ju; Landis, Chad M.; Gomez, Hector
  • Computer Methods in Applied Mechanics and Engineering, Vol. 297
  • DOI: 10.1016/j.cma.2015.09.007

Enhanced lifetime of methane bubble streams within the deep ocean: ENHANCED LIFETIME OF METHANE BUBBLES
journal, August 2002

  • Rehder, Gregor; Brewer, Peter W.; Peltzer, Edward T.
  • Geophysical Research Letters, Vol. 29, Issue 15
  • DOI: 10.1029/2001GL013966

Theory of phase-ordering kinetics
journal, June 1994


Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram
journal, December 2010

  • Sloan, E. Dendy; Koh, Carolyn A.; Sum, Amadeu K.
  • Energies, Vol. 3, Issue 12
  • DOI: 10.3390/en3121991

Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numerical study
journal, August 1999


On the Dynamical Evidence of the Molecular Constitution of Bodies *
journal, March 1875


Development of formation and growth models of CO 2 hydrate film
journal, May 2016

  • Abe, Yutaka; Ma, Xiao; Yanai, Takehiko
  • AIChE Journal, Vol. 62, Issue 11
  • DOI: 10.1002/aic.15304

Path Sampling Calculation of Methane Diffusivity in Natural Gas Hydrates from a Water-Vacancy Assisted Mechanism
journal, December 2008

  • Peters, Baron; Zimmermann, Nils E. R.; Beckham, Gregg T.
  • Journal of the American Chemical Society, Vol. 130, Issue 51
  • DOI: 10.1021/ja802014m

Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon
journal, January 2006


Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface
journal, December 2007

  • Taylor, Craig J.; Miller, Kelly T.; Koh, Carolyn A.
  • Chemical Engineering Science, Vol. 62, Issue 23
  • DOI: 10.1016/j.ces.2007.07.038

Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung
journal, January 1894


Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin
journal, June 1999


Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations
journal, May 2010

  • Gomez, Hector; Hughes, Thomas J. R.; Nogueira, Xesús
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 25-28
  • DOI: 10.1016/j.cma.2010.02.010

Diffusion of Methane, Ethane, Propane, and n-Butane in Water from 25 to 43°
journal, November 1965

  • Witherspoon, P. A.; Saraf, D. N.
  • The Journal of Physical Chemistry, Vol. 69, Issue 11
  • DOI: 10.1021/j100895a017

The interaction of climate change and methane hydrates: Climate-Hydrates Interactions
journal, February 2017

  • Ruppel, Carolyn D.; Kessler, John D.
  • Reviews of Geophysics, Vol. 55, Issue 1
  • DOI: 10.1002/2016RG000534

Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling
journal, October 1999


Methane hydrate film growth kinetics
journal, July 2001


Pore-level hydrate formation mechanisms using realistic rock structures in high-pressure silicon micromodels
journal, October 2016

  • Hauge, L. P.; Gauteplass, J.; Høyland, M. D.
  • International Journal of Greenhouse Gas Control, Vol. 53
  • DOI: 10.1016/j.ijggc.2016.06.017

Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor
journal, June 2017


The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying
journal, October 2011

  • Bangs, Nathan L. B.; Hornbach, Matthew J.; Berndt, Christian
  • Earth and Planetary Science Letters, Vol. 310, Issue 1-2
  • DOI: 10.1016/j.epsl.2011.06.022

Phase-field model of Hele-Shaw flows in the high-viscosity contrast regime
journal, October 2003


Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging
journal, April 2016

  • Wang, Binbin; Socolofsky, Scott A.; Breier, John A.
  • Journal of Geophysical Research: Oceans, Vol. 121, Issue 4
  • DOI: 10.1002/2015JC011452

Widespread methane leakage from the sea floor on the northern US Atlantic margin
journal, August 2014

  • Skarke, A.; Ruppel, C.; Kodis, M.
  • Nature Geoscience, Vol. 7, Issue 9
  • DOI: 10.1038/ngeo2232

Free Energy of a Nonuniform System. I. Interfacial Free Energy
journal, February 1958

  • Cahn, John W.; Hilliard, John E.
  • The Journal of Chemical Physics, Vol. 28, Issue 2
  • DOI: 10.1063/1.1744102

Fundamental principles and applications of natural gas hydrates
journal, November 2003


Macroscopic Phase-Field Model of Partial Wetting: Bubbles in a Capillary Tube
journal, April 2012


Viscous fingering with partially miscible fluids
journal, October 2017


Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles
journal, March 2006

  • Sauter, Eberhard J.; Muyakshin, Sergey I.; Charlou, Jean-Luc
  • Earth and Planetary Science Letters, Vol. 243, Issue 3-4
  • DOI: 10.1016/j.epsl.2006.01.041

Thermodynamic coarsening arrested by viscous fingering in partially miscible binary mixtures
journal, September 2016


Thermodynamic phase-field model for microstructure with multiple components and phases: The possibility of metastable phases
journal, June 2011


The next generation of hydrate prediction
journal, April 2004


Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system
journal, January 2006

  • Svandal, Atle; Kuznetsova, Tatyana; Kvamme, Bjørn
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 14
  • DOI: 10.1039/b516375g

Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models: Dynamic hydrate morphology on a bubble
journal, October 2014

  • Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor
  • Geophysical Research Letters, Vol. 41, Issue 19
  • DOI: 10.1002/2014GL061665

Quasi–incompressible Cahn–Hilliard fluids and topological transitions
journal, October 1998

  • Lowengrub, J.; Truskinovsky, L.
  • Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 454, Issue 1978
  • DOI: 10.1098/rspa.1998.0273

The formation of gas hydrates on bubbles of hydrocarbon gases rising in seawater
journal, January 1984


Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard
journal, September 2015

  • Graves, Carolyn A.; Steinle, Lea; Rehder, Gregor
  • Journal of Geophysical Research: Oceans, Vol. 120, Issue 9
  • DOI: 10.1002/2015JC011084

A time-adaptive finite volume method for the Cahn–Hilliard and Kuramoto–Sivashinsky equations
journal, December 2008


Methane hydrate nonstoichiometry and phase diagram
journal, May 2003

  • Huo, Zhongxin; Hester, Keith; Sloan, E. Dendy
  • AIChE Journal, Vol. 49, Issue 5
  • DOI: 10.1002/aic.690490521

Phase-field modeling of bubble growth and flow in a Hele–Shaw cell
journal, July 2010


Gibbs Energy Analysis of Phase Equilibria
journal, October 1982

  • Baker, L. E.; Pierce, A. C.; Luks, K. D.
  • Society of Petroleum Engineers Journal, Vol. 22, Issue 05
  • DOI: 10.2118/9806-PA

Quantitative phase-field modeling of two-phase growth
journal, July 2005


Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties
journal, October 1999

  • Clennell, M. Ben; Hovland, Martin; Booth, James S.
  • Journal of Geophysical Research: Solid Earth, Vol. 104, Issue B10
  • DOI: 10.1029/1999JB900175

Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach
journal, August 1999


Experimental investigation of hydrate formation behaviour of a natural gas bubble in a simulated deep sea environment
journal, January 1981


Methane Hydrate Formation and Dissociation on Suspended Gas Bubbles in Water
journal, November 2013

  • Chen, Litao; Levine, Jonathan S.; Gilmer, Matthew W.
  • Journal of Chemical & Engineering Data, Vol. 59, Issue 4
  • DOI: 10.1021/je400765a

Diffuse-Interface Methods in Fluid Mechanics
journal, January 1998


Phase-field model for solidification of a monotectic alloy with convection
journal, July 2000


Correction to “Methane Hydrate Formation and Dissociation on Suspended Gas Bubbles in Water”
journal, June 2016

  • Chen, Litao; Levine, Jonathan S.; Gilmer, Matthew W.
  • Journal of Chemical & Engineering Data, Vol. 61, Issue 7
  • DOI: 10.1021/acs.jced.6b00426

The next generation of hydrate prediction IV
journal, February 2004


Correlation of Hydrate-Film Growth Rate at the Guest/Liquid-Water Interface to Mass Transfer Resistance
journal, August 2010

  • Saito, Kota; Sum, Amadeu K.; Ohmura, Ryo
  • Industrial & Engineering Chemistry Research, Vol. 49, Issue 15
  • DOI: 10.1021/ie1000696

Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing
journal, January 1964

  • Wilson, Grant M.
  • Journal of the American Chemical Society, Vol. 86, Issue 2
  • DOI: 10.1021/ja01056a002

Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy: MICROSTRUCTRE OF GAS HYDRATES
journal, June 2015

  • Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen
  • Geochemistry, Geophysics, Geosystems, Vol. 16, Issue 6
  • DOI: 10.1002/2015GC005811

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.