skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries

Abstract

Energy density (energy per volume) is a key consideration for portable, automotive, and stationary battery applications. Selenium (Se) lithium and sodium metal cathodes are created that are monolithic and free-standing, and with record Se loading of 70 wt%. The carbon host is derived from nanocellulose, an abundant and sustainable forestry product. The composite is extremely dense (2.37 g cm-3), enabling theoretical volumetric capacity of 1120 mA h cm-3. Such architecture is fully distinct from previous Se–carbon nano- or micropowders, intrinsically offering up to 2× higher energy density. For Li storage, the cathode delivers reversible capacity of 1028 mA h cm-3 (620 mA h g-1) and 82% retention over 300 cycles. For Na storage, 848 mA h cm-3 (511 mA h g-1) is obtained with 98% retention after 150 cycles. The electrodes yield superb volumetric energy densities, being 1727 W h L-1 for Li–Se and 980 W h L-1 for Na–Se normalized by total composite mass and volume. Despite the low surface area, over 60% capacity is maintained as the current density is increased from 0.1 to 2 C (30 min charge) with Li or Na. Remarkably, the electrochemical kinetics with Li and Na are comparable, including the transition from interfacialmore » to diffusional control.« less

Authors:
 [1];  [1];  [1];  [1];  [2]
  1. State Univ. of New York (SUNY), Binghamton, NY (United States). Chemistry and Materials
  2. Clarkson Univ., Potsdam, NY (United States). Chemical & Biomolecular Engineering and Mechanical Engineering
Publication Date:
Research Org.:
Clarkson Univ., Potsdam, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE
OSTI Identifier:
1505434
Alternate Identifier(s):
OSTI ID: 1410378
Grant/Contract Number:  
SC0018074
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 8; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Ding, Jia, Zhou, Hui, Zhang, Hanlei, Tong, Linyue, and Mitlin, David. Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries. United States: N. p., 2017. Web. doi:10.1002/aenm.201701918.
Ding, Jia, Zhou, Hui, Zhang, Hanlei, Tong, Linyue, & Mitlin, David. Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries. United States. doi:10.1002/aenm.201701918.
Ding, Jia, Zhou, Hui, Zhang, Hanlei, Tong, Linyue, and Mitlin, David. Mon . "Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries". United States. doi:10.1002/aenm.201701918. https://www.osti.gov/servlets/purl/1505434.
@article{osti_1505434,
title = {Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries},
author = {Ding, Jia and Zhou, Hui and Zhang, Hanlei and Tong, Linyue and Mitlin, David},
abstractNote = {Energy density (energy per volume) is a key consideration for portable, automotive, and stationary battery applications. Selenium (Se) lithium and sodium metal cathodes are created that are monolithic and free-standing, and with record Se loading of 70 wt%. The carbon host is derived from nanocellulose, an abundant and sustainable forestry product. The composite is extremely dense (2.37 g cm-3), enabling theoretical volumetric capacity of 1120 mA h cm-3. Such architecture is fully distinct from previous Se–carbon nano- or micropowders, intrinsically offering up to 2× higher energy density. For Li storage, the cathode delivers reversible capacity of 1028 mA h cm-3 (620 mA h g-1) and 82% retention over 300 cycles. For Na storage, 848 mA h cm-3 (511 mA h g-1) is obtained with 98% retention after 150 cycles. The electrodes yield superb volumetric energy densities, being 1727 W h L-1 for Li–Se and 980 W h L-1 for Na–Se normalized by total composite mass and volume. Despite the low surface area, over 60% capacity is maintained as the current density is increased from 0.1 to 2 C (30 min charge) with Li or Na. Remarkably, the electrochemical kinetics with Li and Na are comparable, including the transition from interfacial to diffusional control.},
doi = {10.1002/aenm.201701918},
journal = {Advanced Energy Materials},
number = 8,
volume = 8,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic highlighting synthesis process for the selenium impregnated NanoCellulose derived Monolithic Carbons (Se–NCMC).

Save / Share:

Works referenced in this record:

A new energy storage system: Rechargeable potassium-selenium battery
journal, May 2017


A Free-Standing and Ultralong-Life Lithium-Selenium Battery Cathode Enabled by 3D Mesoporous Carbon/Graphene Hierarchical Architecture
journal, November 2014

  • Han, Kai; Liu, Zhao; Shen, Jingmei
  • Advanced Functional Materials, Vol. 25, Issue 3
  • DOI: 10.1002/adfm.201402815

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

A Flexible Porous Carbon Nanofibers-Selenium Cathode with Superior Electrochemical Performance for Both Li-Se and Na-Se Batteries
journal, November 2014

  • Zeng, Linchao; Zeng, Wencong; Jiang, Yu
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401377

A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium–Sulfur as a Positive Electrode
journal, February 2012

  • Abouimrane, Ali; Dambournet, Damien; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 134, Issue 10
  • DOI: 10.1021/ja211766q

Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li
journal, January 2014

  • Memarzadeh Lotfabad, Elmira; Kalisvaart, Peter; Kohandehghan, Alireza
  • J. Mater. Chem. A, Vol. 2, Issue 46
  • DOI: 10.1039/C4TA04995K

A study of the electrical conductivity of amorphous-crystalline selenium mixtures
journal, November 1987


The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon
journal, June 2016


The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

High temperature sodium batteries: status, challenges and future trends
journal, January 2013

  • Hueso, Karina B.; Armand, Michel; Rojo, Teófilo
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24086j

Determination of the Li ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway
journal, November 1999


Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

Graphitic Nanocarbon–Selenium Cathode with Favorable Rate Capability for Li–Se Batteries
journal, March 2017

  • Zhang, Shuai-Feng; Wang, Wen-Peng; Xin, Sen
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 10
  • DOI: 10.1021/acsami.6b16708

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013

  • Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3601

Amorphous, Crystalline and Crystalline/Amorphous Selenium Nanowires and Their Different (De)Lithiation Mechanisms
journal, September 2015


An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries
journal, June 2013

  • Yang, Chun-Peng; Xin, Sen; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 52, Issue 32
  • DOI: 10.1002/anie.201303147

Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode
journal, January 2017

  • Ding, Jia; Zhou, Hui; Zhang, Hanlei
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02274J

Development and challenges of LiFePO 4 cathode material for lithium-ion batteries
journal, January 2011

  • Yuan, Li-Xia; Wang, Zhao-Hui; Zhang, Wu-Xing
  • Energy Environ. Sci., Vol. 4, Issue 2
  • DOI: 10.1039/C0EE00029A

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Strongly Bonded Selenium/Microporous Carbon Nanofibers Composite as a High-Performance Cathode for Lithium–Selenium Batteries
journal, November 2015

  • Liu, Yunxia; Si, Ling; Du, Yichen
  • The Journal of Physical Chemistry C, Vol. 119, Issue 49
  • DOI: 10.1021/acs.jpcc.5b09553

Micrometer-Sized, Nanoporous, High-Volumetric-Capacity LiMn0.85Fe0.15PO4 Cathode Material for Rechargeable Lithium-Ion Batteries
journal, September 2011

  • Sun, Yang-Kook; Oh, Seung-Min; Park, Hong-Kyu
  • Advanced Materials, Vol. 23, Issue 43
  • DOI: 10.1002/adma.201102497

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Charge carriers in rechargeable batteries: Na ions vs. Li ions
journal, January 2013

  • Hong, Sung You; Kim, Youngjin; Park, Yuwon
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40811f

Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries
journal, October 2014


Li-ion battery materials: present and future
journal, June 2015


In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries
journal, January 2015

  • Luo, Chao; Wang, Jingjing; Suo, Liumin
  • Journal of Materials Chemistry A, Vol. 3, Issue 2
  • DOI: 10.1039/C4TA04611K

Elastic Carbon Nanotube Aerogel Meets Tellurium Nanowires: A Binder- and Collector-Free Electrode for Li-Te Batteries
journal, May 2016

  • Xu, Jie; Xin, Sen; Liu, Jian-Wei
  • Advanced Functional Materials, Vol. 26, Issue 21
  • DOI: 10.1002/adfm.201600640

Flexible self-standing graphene–Se@CNT composite film as a binder-free cathode for rechargeable Li–Se batteries
journal, October 2014


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Three-Dimensional Hierarchical Graphene-CNT@Se: A Highly Efficient Freestanding Cathode for Li–Se Batteries
journal, April 2016


Selenium@Mesoporous Carbon Composite with Superior Lithium and Sodium Storage Capacity
journal, August 2013


A Se/C composite as cathode material for rechargeable lithium batteries with good electrochemical performance
journal, January 2014

  • Liu, Lili; Hou, Yuyang; Yang, Yaqiong
  • RSC Adv., Vol. 4, Issue 18
  • DOI: 10.1039/C3RA48034H

Sulfur Refines MoO 2 Distribution Enabling Improved Lithium Ion Battery Performance
journal, July 2014

  • Xu, Zhanwei; Wang, Huanlei; Li, Zhi
  • The Journal of Physical Chemistry C, Vol. 118, Issue 32
  • DOI: 10.1021/jp504721y

Synthesis of Li[Li1.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries
journal, April 2012


One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature
journal, August 2013

  • Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402513x

Novel Design Concepts of Efficient Mg-Ion Electrolytes toward High-Performance Magnesium-Selenium and Magnesium-Sulfur Batteries
journal, January 2017

  • Zhang, Zhonghua; Cui, Zili; Qiao, Lixin
  • Advanced Energy Materials, Vol. 7, Issue 11
  • DOI: 10.1002/aenm.201602055

Selenium/Graphite Platelet Nanofiber Composite for Durable Li–Se Batteries
journal, May 2017


An SbO x /Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries
journal, October 2014

  • Zhou, Xiaosi; Liu, Xia; Xu, Yan
  • The Journal of Physical Chemistry C, Vol. 118, Issue 41
  • DOI: 10.1021/jp507116t

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism
journal, August 2016


Chiral Nematic Mesoporous Carbon Derived From Nanocrystalline Cellulose
journal, September 2011

  • Shopsowitz, Kevin E.; Hamad, Wadood Y.; MacLachlan, Mark J.
  • Angewandte Chemie International Edition, Vol. 50, Issue 46
  • DOI: 10.1002/anie.201105479

Sodiation vs. lithiation phase transformations in a high rate – high stability SnO 2 in carbon nanocomposite
journal, January 2015

  • Ding, Jia; Li, Zhi; Wang, Huanlei
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C5TA00399G

Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries
journal, May 2013

  • Noh, Hyung-Joo; Chen, Zonghai; Yoon, Chong S.
  • Chemistry of Materials, Vol. 25, Issue 10
  • DOI: 10.1021/cm4006772

Ambient-Temperature Sodium-Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode
journal, April 2015


Ultralong Cycle Life Sodium-Ion Battery Anodes Using a Graphene-Templated Carbon Hybrid
journal, September 2014

  • Zhou, Xiaosi; Zhu, Xiaoshu; Liu, Xia
  • The Journal of Physical Chemistry C, Vol. 118, Issue 39
  • DOI: 10.1021/jp5064403

Selenium and Selenium–Sulfur Chemistry for Rechargeable Lithium Batteries: Interplay of Cathode Structures, Electrolytes, and Interfaces
journal, February 2017


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

(De)Lithiation Mechanism of Li/SeS x ( x = 0–7) Batteries Determined by in Situ Synchrotron X-ray Diffraction and X-ray Absorption Spectroscopy
journal, May 2013

  • Cui, Yanjie; Abouimrane, Ali; Lu, Jun
  • Journal of the American Chemical Society, Vol. 135, Issue 21
  • DOI: 10.1021/ja402597g

Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries
journal, November 2006


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries
journal, January 2013

  • Kohandehghan, Alireza; Kalisvaart, Peter; Kupsta, Martin
  • J. Mater. Chem. A, Vol. 1, Issue 5
  • DOI: 10.1039/C2TA00769J

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Elemental Selenium for Electrochemical Energy Storage
journal, January 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Guo, Yu-Guo
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/jz502405h

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Polarized Raman spectra of selenium species confined in nanochannels of AlPO4-5 single crystals
journal, November 1997


Stage Transformation of Lithium-Graphite Intercalation Compounds Caused by Electrochemical Lithium Intercalation
journal, January 1999

  • Funabiki, Atsushi
  • Journal of The Electrochemical Society, Vol. 146, Issue 7
  • DOI: 10.1149/1.1391953

Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes
journal, February 2015

  • Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411109

Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores
journal, January 1998


A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


A selenium-confined microporous carbon cathode for ultrastable lithium–selenium batteries
journal, January 2014

  • Liu, Yunxia; Si, Ling; Zhou, Xiaosi
  • J. Mater. Chem. A, Vol. 2, Issue 42
  • DOI: 10.1039/C4TA03141E

Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries
journal, September 2016


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.