skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa

Abstract

We investigated the high-pressure behavior of polyethylene (CH 2) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A2/m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [2];  [4];  [5];  [2];  [6];  [2];  [2];  [7]; ORCiD logo [8];  [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [5];  [9];  [10];  [2] more »;  [11];  [4];  [7];  [7];  [12];  [3];  [3];  [5];  [13];  [14];  [3];  [2];  [2];  [7]; ORCiD logo [3] « less
  1. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Osaka Univ., Osaka (Japan)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden, Dresden (Germany)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. Univ. of California, Berkeley, CA (United States)
  6. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Technische Univ. Darmstadt, Darmstadt (Germany)
  7. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)
  8. Univ. of Warwick, Coventry (United Kingdom)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States); European XFEL GmbH, Schenefeld (Germany)
  11. GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany)
  12. Univ. Paris VI-Ecole Polytechnique, Palaiseau Cedex (France)
  13. European XFEL GmbH, Schenefeld (Germany)
  14. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. Rostock, Rostock (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1505422
Grant/Contract Number:  
AC02-76SF00515; VH-NG-1141; 16K17846; AC52-07NA27344; SC0018298; 05P15RDFA1; SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., and Kraus, D. Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa. United States: N. p., 2019. Web. doi:10.1038/s41598-019-40782-5.
Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., & Kraus, D. Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa. United States. doi:10.1038/s41598-019-40782-5.
Hartley, N. J., Brown, S., Cowan, T. E., Cunningham, E., Döppner, T., Falcone, R. W., Fletcher, L. B., Frydrych, S., Galtier, E., Gamboa, E. J., Laso Garcia, A., Gericke, D. O., Glenzer, S. H., Granados, E., Heimann, P. A., Lee, H. J., MacDonald, M. J., MacKinnon, A. J., McBride, E. E., Nam, I., Neumayer, P., Pak, A., Pelka, A., Prencipe, I., Ravasio, A., Rödel, M., Rohatsch, K., Saunders, A. M., Schölmerich, M., Schörner, M., Schuster, A. K., Sun, P., van Driel, T., Vorberger, J., and Kraus, D. Tue . "Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa". United States. doi:10.1038/s41598-019-40782-5. https://www.osti.gov/servlets/purl/1505422.
@article{osti_1505422,
title = {Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa},
author = {Hartley, N. J. and Brown, S. and Cowan, T. E. and Cunningham, E. and Döppner, T. and Falcone, R. W. and Fletcher, L. B. and Frydrych, S. and Galtier, E. and Gamboa, E. J. and Laso Garcia, A. and Gericke, D. O. and Glenzer, S. H. and Granados, E. and Heimann, P. A. and Lee, H. J. and MacDonald, M. J. and MacKinnon, A. J. and McBride, E. E. and Nam, I. and Neumayer, P. and Pak, A. and Pelka, A. and Prencipe, I. and Ravasio, A. and Rödel, M. and Rohatsch, K. and Saunders, A. M. and Schölmerich, M. and Schörner, M. and Schuster, A. K. and Sun, P. and van Driel, T. and Vorberger, J. and Kraus, D.},
abstractNote = {We investigated the high-pressure behavior of polyethylene (CH2) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A2/m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.},
doi = {10.1038/s41598-019-40782-5},
journal = {Scientific Reports},
number = 1,
volume = 9,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share: