skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: LIVVkit 2.1: automated and extensible ice sheet model validation

Abstract

A collection of scientific analyses, metrics, and visualizations for robustvalidation of ice sheet models is presented using the Land Ice Verificationand Validation toolkit (LIVVkit), version 2.1, and the LIVVkit Extensionsrepository (LEX), version 0.1. This software collection targets stand-aloneice sheet or coupled Earth system models, and handles datasets and analysesthat require high-performance computing and storage. LIVVkit aims to enableefficient and fully reproducible workflows for postprocessing, analysis, andvisualization of observational and model-derived datasets in a shareableformat, whereby all data, methodologies, and output are distributed to usersfor evaluation. Extending from the initial LIVVkit software framework, wedemonstrate Greenland ice sheet simulation validation metrics using thecoupled Community Earth System Model (CESM) as well as an idealizedstand-alone high-resolution Community Ice Sheet Model, version 2 (CISM2),coupled to the Albany/FELIX velocity solver (CISM-Albany or CISM-A). As oneexample of the capability, LIVVkit analyzes the degree to which modelscapture the surface mass balance (SMB) and identifies potential sources ofbias, using recently available in situ and remotely sensed data ascomparison. Related fields within atmosphere and land surface models, e.g.,surface temperature, radiation, and cloud cover, are also diagnosed. Appliedto the CESM1.0, LIVVkit identifies a positive SMB bias that is focusedlargely around Greenland's southwest region that is due to insufficientablation.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [3];  [6]; ORCiD logo [7]; ORCiD logo [8]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Colorado School of Mines, Golden, CO (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Associated Engineering, Vernon, BC (Canada)
  5. Univ. of Washington, Seattle, WA (United States)
  6. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  7. Univ. of California, Irvine, CA (United States)
  8. Delft Univ. of Technology, Delft (The Netherlands)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
OSTI Identifier:
1505335
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Geoscientific Model Development (Online)
Additional Journal Information:
Journal Name: Geoscientific Model Development (Online); Journal Volume: 12; Journal Issue: 3; Journal ID: ISSN 1991-9603
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Evans, Katherine J., Kennedy, Joseph H., Lu, Dan, Forrester, Mary M., Price, Stephen, Fyke, Jeremy, Bennett, Andrew R., Hoffman, Matthew J., Tezaur, Irina, Zender, Charles S., and Vizcaíno, Miren. LIVVkit 2.1: automated and extensible ice sheet model validation. United States: N. p., 2019. Web. doi:10.5194/gmd-12-1067-2019.
Evans, Katherine J., Kennedy, Joseph H., Lu, Dan, Forrester, Mary M., Price, Stephen, Fyke, Jeremy, Bennett, Andrew R., Hoffman, Matthew J., Tezaur, Irina, Zender, Charles S., & Vizcaíno, Miren. LIVVkit 2.1: automated and extensible ice sheet model validation. United States. doi:10.5194/gmd-12-1067-2019.
Evans, Katherine J., Kennedy, Joseph H., Lu, Dan, Forrester, Mary M., Price, Stephen, Fyke, Jeremy, Bennett, Andrew R., Hoffman, Matthew J., Tezaur, Irina, Zender, Charles S., and Vizcaíno, Miren. Fri . "LIVVkit 2.1: automated and extensible ice sheet model validation". United States. doi:10.5194/gmd-12-1067-2019. https://www.osti.gov/servlets/purl/1505335.
@article{osti_1505335,
title = {LIVVkit 2.1: automated and extensible ice sheet model validation},
author = {Evans, Katherine J. and Kennedy, Joseph H. and Lu, Dan and Forrester, Mary M. and Price, Stephen and Fyke, Jeremy and Bennett, Andrew R. and Hoffman, Matthew J. and Tezaur, Irina and Zender, Charles S. and Vizcaíno, Miren},
abstractNote = {A collection of scientific analyses, metrics, and visualizations for robustvalidation of ice sheet models is presented using the Land Ice Verificationand Validation toolkit (LIVVkit), version 2.1, and the LIVVkit Extensionsrepository (LEX), version 0.1. This software collection targets stand-aloneice sheet or coupled Earth system models, and handles datasets and analysesthat require high-performance computing and storage. LIVVkit aims to enableefficient and fully reproducible workflows for postprocessing, analysis, andvisualization of observational and model-derived datasets in a shareableformat, whereby all data, methodologies, and output are distributed to usersfor evaluation. Extending from the initial LIVVkit software framework, wedemonstrate Greenland ice sheet simulation validation metrics using thecoupled Community Earth System Model (CESM) as well as an idealizedstand-alone high-resolution Community Ice Sheet Model, version 2 (CISM2),coupled to the Albany/FELIX velocity solver (CISM-Albany or CISM-A). As oneexample of the capability, LIVVkit analyzes the degree to which modelscapture the surface mass balance (SMB) and identifies potential sources ofbias, using recently available in situ and remotely sensed data ascomparison. Related fields within atmosphere and land surface models, e.g.,surface temperature, radiation, and cloud cover, are also diagnosed. Appliedto the CESM1.0, LIVVkit identifies a positive SMB bias that is focusedlargely around Greenland's southwest region that is due to insufficientablation.},
doi = {10.5194/gmd-12-1067-2019},
journal = {Geoscientific Model Development (Online)},
number = 3,
volume = 12,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet
journal, June 2017

  • Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier
  • Science Advances, Vol. 3, Issue 6
  • DOI: 10.1126/sciadv.1700584

Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers
journal, July 2016

  • Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker
  • Journal of Glaciology, Vol. 62, Issue 235
  • DOI: 10.1017/jog.2016.75

Climatology of Total Cloudiness in the Arctic: An Intercomparison of Observations and Reanalyses
journal, January 2012

  • Chernokulsky, Alexander; Mokhov, Igor I.
  • Advances in Meteorology, Vol. 2012
  • DOI: 10.1155/2012/542093

Analysis of self-describing gridded geoscience data with netCDF Operators (NCO)
journal, October 2008


The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones
journal, April 2007

  • McGranahan, Gordon; Balk, Deborah; Anderson, Bridget
  • Environment and Urbanization, Vol. 19, Issue 1
  • DOI: 10.1177/0956247807076960

Greenland accumulation: An error model
journal, January 2004


Greenland flow variability from ice-sheet-wide velocity mapping
journal, January 2010


LIVVkit: An extensible, python‐based, land ice verification and validation toolkit for ice sheet models
journal, April 2017

  • Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.
  • Journal of Advances in Modeling Earth Systems, Vol. 9, Issue 2
  • DOI: 10.1002/2017MS000916

Deeply incised submarine glacial valleys beneath the Greenland ice sheet
journal, May 2014

  • Morlighem, M.; Rignot, E.; Mouginot, J.
  • Nature Geoscience, Vol. 7, Issue 6
  • DOI: 10.1038/ngeo2167

Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics: CAM4 AND CAM5 ARCTIC CLOUD EVALUATION
journal, August 2012

  • Barton, Neil P.; Klein, Stephen A.; Boyle, James S.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017589

Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data
journal, January 2009

  • Bales, Roger C.; Guo, Qinghua; Shen, Dayong
  • Journal of Geophysical Research, Vol. 114, Issue D6
  • DOI: 10.1029/2008JD011208

Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet
journal, January 2015

  • Noël, B.; van de Berg, W. J.; van Meijgaard, E.
  • The Cryosphere, Vol. 9, Issue 5
  • DOI: 10.5194/tc-9-1831-2015

The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets
journal, January 2014


Annual Greenland accumulation rates (2009–2012) from airborne snow radar
journal, January 2016

  • Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.
  • The Cryosphere, Vol. 10, Issue 4
  • DOI: 10.5194/tc-10-1739-2016

Ice sheet dynamics within an earth system model: downscaling, coupling and first results
journal, January 2014

  • Barbi, D.; Lohmann, G.; Grosfeld, K.
  • Geoscientific Model Development, Vol. 7, Issue 5
  • DOI: 10.5194/gmd-7-2003-2014

Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison
journal, January 2018


Accumulation over the Greenland ice sheet from historical and recent records
journal, December 2001

  • Bales, Roger C.; McConnell, Joseph R.; Mosley-Thompson, Ellen
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D24
  • DOI: 10.1029/2001JD900153

Generalizing a Data Analysis Pipeline in the Cloud to Handle Diverse Use Cases in NASA's EOSDIS
conference, July 2018

  • Lynnes, Christopher; Ramachandran, Rahul
  • IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
  • DOI: 10.1109/IGARSS.2018.8519178

A synthesis of the basal thermal state of the Greenland Ice Sheet: GREENLAND BASAL THERMAL STATE
journal, July 2016

  • MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.
  • Journal of Geophysical Research: Earth Surface, Vol. 121, Issue 7
  • DOI: 10.1002/2015JF003803

Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions
journal, January 2014

  • Ziemen, F. A.; Rodehacke, C. B.; Mikolajewicz, U.
  • Climate of the Past, Vol. 10, Issue 5
  • DOI: 10.5194/cp-10-1817-2014

The CCSM4 Land Simulation, 1850–2005: Assessment of Surface Climate and New Capabilities
journal, April 2012


Albany/FELIX : a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis
journal, January 2015

  • Tezaur, I. K.; Perego, M.; Salinger, A. G.
  • Geoscientific Model Development, Vol. 8, Issue 4
  • DOI: 10.5194/gmd-8-1197-2015

BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation
journal, November 2017

  • Morlighem, M.; Williams, C. N.; Rignot, E.
  • Geophysical Research Letters, Vol. 44, Issue 21
  • DOI: 10.1002/2017GL074954

Ice-Sheet Dynamics
journal, January 2013


OSTIA : An operational, high resolution, real time, global sea surface temperature analysis system
conference, June 2007


An ice sheet model validation framework for the Greenland ice sheet
journal, January 2017

  • Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.
  • Geoscientific Model Development, Vol. 10, Issue 1
  • DOI: 10.5194/gmd-10-255-2017

Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar
journal, January 2017

  • Lewis, Gabriel; Osterberg, Erich; Hawley, Robert
  • The Cryosphere, Vol. 11, Issue 2
  • DOI: 10.5194/tc-11-773-2017

Complex Greenland outlet glacier flow captured
journal, February 2016

  • Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10524

Clouds enhance Greenland ice sheet meltwater runoff
journal, January 2016

  • Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10266

Greenland annual accumulation along the EGIG line, 1959–2004, from ASIRAS airborne radar and neutron-probe density measurements
journal, January 2016


The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM): ICE SHEET SYSTEM MODEL
journal, March 2012

  • Larour, E.; Seroussi, H.; Morlighem, M.
  • Journal of Geophysical Research: Earth Surface, Vol. 117, Issue F1
  • DOI: 10.1029/2011JF002140

New precipitation and accumulation maps for Greenland
journal, January 1991


Polar clouds and radiation in satellite observations, reanalyses, and climate models: POLAR CLOUDS AND RADIATION
journal, April 2017

  • Lenaerts, Jan T. M.; Van Tricht, Kristof; Lhermitte, Stef
  • Geophysical Research Letters, Vol. 44, Issue 7
  • DOI: 10.1002/2016GL072242

The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments
journal, July 2013


Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6
journal, January 2016

  • Nowicki, Sophie M. J.; Payne, Anthony; Larour, Eric
  • Geoscientific Model Development, Vol. 9, Issue 12
  • DOI: 10.5194/gmd-9-4521-2016

The Glimmer community ice sheet model
journal, January 2009

  • Rutt, I. C.; Hagdorn, M.; Hulton, N. R. J.
  • Journal of Geophysical Research, Vol. 114, Issue F2
  • DOI: 10.1029/2008JF001015

Twenty-one years of mass balance observations along the K-transect, West Greenland
journal, January 2012

  • van de Wal, R. S. W.; Boot, W.; Smeets, C. J. P. P.
  • Earth System Science Data, Vol. 4, Issue 1
  • DOI: 10.5194/essd-4-31-2012

Exploring an Ensemble-Based Approach to Atmospheric Climate Modeling and Testing at Scale
journal, January 2017


Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results
journal, October 2013

  • Vizcaíno, Miren; Lipscomb, William H.; Sacks, William J.
  • Journal of Climate, Vol. 26, Issue 20
  • DOI: 10.1175/JCLI-D-12-00615.1

Cloud influence on and response to seasonal Arctic sea ice loss
journal, January 2009

  • Kay, Jennifer E.; Gettelman, Andrew
  • Journal of Geophysical Research, Vol. 114, Issue D18
  • DOI: 10.1029/2009JD011773

Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet
journal, November 2013

  • van Angelen, J. H.; van den Broeke, M. R.; Wouters, B.
  • Surveys in Geophysics, Vol. 35, Issue 5
  • DOI: 10.1007/s10712-013-9261-z

Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model
journal, October 2013

  • Lipscomb, William H.; Fyke, Jeremy G.; Vizcaíno, Miren
  • Journal of Climate, Vol. 26, Issue 19
  • DOI: 10.1175/JCLI-D-12-00557.1

Optimal initial conditions for coupling ice sheet models to Earth system models: PEREGO ET AL.
journal, September 2014

  • Perego, Mauro; Price, Stephen; Stadler, Georg
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 9
  • DOI: 10.1002/2014JF003181

Ice sheets as interactive components of Earth System Models: progress and challenges: Ice sheets as interactive components of Earth System Models
journal, May 2014

  • Vizcaino, Miren
  • Wiley Interdisciplinary Reviews: Climate Change, Vol. 5, Issue 4
  • DOI: 10.1002/wcc.285