DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Local and statistical maps of lightning-generated wave power density estimated at the Van Allen Probes footprints from the World-Wide Lightning Location Network database

Abstract

We introduce a new method that uses the World-Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2x108 strokes.). The ratio of the drift power density to the local power density defines a time-resolved WWLLN-based model of lightning-generated wave (LGW) power density ratio, $$\mathcal{R_{WWLLN}}$$. $$\mathcal{R_{WWLLN}}$$ is computed every ~34s. This ratio multiplied by the time-resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belts codes. According to Statistical analysis, the median power density ratio is $$\mathcal{\hat{R}_{WWLLN}}$$ = 0.3 - 4 over the Americas. Elsewhere, $$\mathcal{\hat{R}_{WWLLN}}$$ > 1 in general. Over oceans, $$\mathcal{\hat{R}_{WWLLN}}$$ is larger than ~10 and varies with season (x2.5 from winter to summer). The yearly median $$\mathcal{\hat{R}_{WWLLN}}$$ decays as $$\mathcal{\hat{R}_{WWLLN}}$$~9.9/L0.91. The strong geographical and temporal variation should be kept in assessing effects in space. $$\mathcal{R_{WWLLN}}$$> 1 suggests significant LGW effects in the inner belt.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]
  1. Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1504656
Report Number(s):
LA-UR-19-21524
Journal ID: ISSN 0094-8276
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 46; Journal Issue: none; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Heliospheric and Magnetospheric Physics; Lightning power; WWLLN database; lightning-generated waves; drift wave power; density; occurrence rate; radiation belts

Citation Formats

Ripoll, Jean Francois, Farges, Thomas, Lay, Erin H., and Cunningham, Gregory Scott. Local and statistical maps of lightning-generated wave power density estimated at the Van Allen Probes footprints from the World-Wide Lightning Location Network database. United States: N. p., 2019. Web. doi:10.1029/2018GL081146.
Ripoll, Jean Francois, Farges, Thomas, Lay, Erin H., & Cunningham, Gregory Scott. Local and statistical maps of lightning-generated wave power density estimated at the Van Allen Probes footprints from the World-Wide Lightning Location Network database. United States. https://doi.org/10.1029/2018GL081146
Ripoll, Jean Francois, Farges, Thomas, Lay, Erin H., and Cunningham, Gregory Scott. Tue . "Local and statistical maps of lightning-generated wave power density estimated at the Van Allen Probes footprints from the World-Wide Lightning Location Network database". United States. https://doi.org/10.1029/2018GL081146. https://www.osti.gov/servlets/purl/1504656.
@article{osti_1504656,
title = {Local and statistical maps of lightning-generated wave power density estimated at the Van Allen Probes footprints from the World-Wide Lightning Location Network database},
author = {Ripoll, Jean Francois and Farges, Thomas and Lay, Erin H. and Cunningham, Gregory Scott},
abstractNote = {We introduce a new method that uses the World-Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2x108 strokes.). The ratio of the drift power density to the local power density defines a time-resolved WWLLN-based model of lightning-generated wave (LGW) power density ratio, $\mathcal{R_{WWLLN}}$. $\mathcal{R_{WWLLN}}$ is computed every ~34s. This ratio multiplied by the time-resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belts codes. According to Statistical analysis, the median power density ratio is $\mathcal{\hat{R}_{WWLLN}}$ = 0.3 - 4 over the Americas. Elsewhere, $\mathcal{\hat{R}_{WWLLN}}$ > 1 in general. Over oceans, $\mathcal{\hat{R}_{WWLLN}}$ is larger than ~10 and varies with season (x2.5 from winter to summer). The yearly median $\mathcal{\hat{R}_{WWLLN}}$ decays as $\mathcal{\hat{R}_{WWLLN}}$~9.9/L0.91. The strong geographical and temporal variation should be kept in assessing effects in space. $\mathcal{R_{WWLLN}}$> 1 suggests significant LGW effects in the inner belt.},
doi = {10.1029/2018GL081146},
journal = {Geophysical Research Letters},
number = none,
volume = 46,
place = {United States},
year = {Tue Mar 26 00:00:00 EDT 2019},
month = {Tue Mar 26 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth
journal, January 2010

  • Abarca, Sergio F.; Corbosiero, Kristen L.; Galarneau, Thomas J.
  • Journal of Geophysical Research, Vol. 115, Issue D18
  • DOI: 10.1029/2009JD013411

Electron scattering loss in Earth's inner magnetosphere: 1. Dominant physical processes
journal, February 1998

  • Abel, Bob; Thorne, Richard M.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A2
  • DOI: 10.1029/97JA02919

Dependence of quasi-linear diffusion coefficients on wave parameters: DEPENDENCE ON WAVE PARAMETERS
journal, September 2012

  • Albert, J. M.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A9
  • DOI: 10.1029/2012JA017718

ICE, the electric field experiment on DEMETER
journal, April 2006


Frequency-time spectra of magnetospherically reflecting whistlers in the plasmasphere
journal, January 2003


Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves: 2. Global signatures
journal, January 2006

  • Bortnik, J.; Inan, U. S.; Bell, T. F.
  • Journal of Geophysical Research, Vol. 111, Issue A2
  • DOI: 10.1029/2005JA011398

Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS): WWLLN Detection Efficiency Relative to LIS
journal, September 2017

  • Bürgesser, Rodrigo E.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 143, Issue 708
  • DOI: 10.1002/qj.3129

Attenuation of lightning-produced sferics in the Earth-ionosphere waveguide and low-latitude ionosphere: ATTENUATION OF LIGHTNING SFERICS
journal, June 2013

  • Burkholder, Brian S.; Hutchins, Michael L.; McCarthy, Michael P.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 6
  • DOI: 10.1002/jgra.50351

Gridded lightning climatology from TRMM-LIS and OTD: Dataset description
journal, January 2014


TRMM LIS Climatology of Thunderstorm Occurrence and Conditional Lightning Flash Rates
journal, August 2015

  • Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.
  • Journal of Climate, Vol. 28, Issue 16
  • DOI: 10.1175/JCLI-D-15-0124.1

Global frequency and distribution of lightning as observed from space by the Optical Transient Detector
journal, January 2003


Assigning the causative lightning to the whistlers observed on satellites
journal, January 2006


Ground-based transmitter signals observed from space: Ducted or nonducted?: TRANSMITTER SIGNALS SEEN FROM SATELLITE
journal, April 2008

  • Clilverd, Mark A.; Rodger, Craig J.; Gamble, Rory
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A4
  • DOI: 10.1029/2007JA012602

Models of ionospheric VLF absorption of powerful ground based transmitters
journal, December 2012

  • Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.
  • Geophysical Research Letters, Vol. 39, Issue 24
  • DOI: 10.1029/2012GL054437

VLF wave intensity in the plasmasphere due to tropospheric lightning: VLF IN THE PLASMASPHERE DUE TO LIGHTNING
journal, July 2013

  • Colman, J. J.; Starks, M. J.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 7
  • DOI: 10.1002/jgra.50217

Periodic fading of VLF signals received over long paths during sunrise and sunset
journal, January 1964

  • Crombie, D. D.
  • Journal of Research of the National Bureau of Standards, Section D: Radio Science, Vol. 68D, Issue 1
  • DOI: 10.6028/jres.068D.012

C/NOFS: a mission to forecast scintillations
journal, November 2004


VLF lightning location by time of group arrival (TOGA) at multiple sites
journal, May 2002

  • Dowden, Richard L.; Brundell, James B.; Rodger, Craig J.
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 64, Issue 7
  • DOI: 10.1016/S1364-6826(02)00085-8

Whistler intensities above thunderstorms
journal, January 2010


Low-frequency waves in the magnetosphere
journal, January 1969


Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes: BRIEF REPORT
journal, June 2011

  • Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A6
  • DOI: 10.1029/2010JA016198

Relative detection efficiency of the World Wide Lightning Location Network: RELATIVE DETECTION EFFICIENCY OF WWLLN
journal, December 2012

  • Hutchins, M. L.; Holzworth, R. H.; Brundell, J. B.
  • Radio Science, Vol. 47, Issue 6
  • DOI: 10.1029/2012RS005049

Far-Field Power of Lightning Strokes as Measured by the World Wide Lightning Location Network
journal, August 2012

  • Hutchins, Michael L.; Holzworth, Robert H.; Rodger, Craig J.
  • Journal of Atmospheric and Oceanic Technology, Vol. 29, Issue 8
  • DOI: 10.1175/JTECH-D-11-00174.1

Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth
journal, August 2006

  • Jacobson, Abram R.; Holzworth, Robert; Harlin, Jeremiah
  • Journal of Atmospheric and Oceanic Technology, Vol. 23, Issue 8
  • DOI: 10.1175/JTECH1902.1

Coordinated Satellite Observations of the Very Low Frequency Transmission Through the Ionospheric D Layer at Low Latitudes, Using Broadband Radio Emissions From Lightning
journal, April 2018

  • Jacobson, Abram R.; Holzworth, Robert H.; Pfaff, Robert
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 4
  • DOI: 10.1002/2017JA024942

Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion: BRIEF REPORT
journal, October 2011

  • Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A10
  • DOI: 10.1029/2011JA016684

WWLL global lightning detection system: Regional validation study in Brazil
journal, January 2004


Science Objectives and Rationale for the Radiation Belt Storm Probes Mission
journal, September 2012


Relativistic electron loss timescales in the slot region: SLOT REGION LOSS TIMESCALES
journal, March 2009

  • Meredith, Nigel P.; Horne, Richard B.; Glauert, Sarah A.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A3
  • DOI: 10.1029/2008JA013889

Electron lifetimes from narrowband wave-particle interactions within the plasmasphere: Electron lifetimes from narrowband waves
journal, November 2014

  • Ripoll, J. -F.; Albert, J. M.; Cunningham, G. S.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 11
  • DOI: 10.1002/2014JA020217

On long decays of electrons in the vicinity of the slot region observed by HEO3: HEO electron long decays in the slot
journal, January 2015

  • Ripoll, J. -F.; Chen, Y.; Fennell, J. F.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 1
  • DOI: 10.1002/2014JA020449

Effects of whistler mode hiss waves in March 2013
journal, July 2017

  • Ripoll, J. ‐F.; Santolík, O.; Reeves, G. D.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 7
  • DOI: 10.1002/2017JA024139

On the dynamics of hot air plasmas related to lightning discharges: 2. Electrodynamics: Electrodynamics of lightning air plasmas
journal, August 2014

  • Ripoll, Jean-François; Zinn, John; Colestock, Patrick L.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 15
  • DOI: 10.1002/2013JD020068

On the dynamics of hot air plasmas related to lightning discharges: 1. Gas dynamics: Air plasmas related to lightnings
journal, August 2014

  • Ripoll, Jean-François; Zinn, John; Jeffery, Christopher A.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 15
  • DOI: 10.1002/2013JD020067

Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade
journal, January 2005


Location accuracy of long distance VLF lightning locationnetwork
journal, January 2004


Growing Detection Efficiency of the World Wide Lightning Location Network
conference, January 2009

  • Rodger, C. J.; Brundell, J. B.; Holzworth, R. H.
  • COUPLING OF THUNDERSTORMS AND LIGHTNING DISCHARGES TO NEAR-EARTH SPACE: Proceedings of the Workshop, AIP Conference Proceedings
  • DOI: 10.1063/1.3137706

Significance of lightning-generated whistlers to inner radiation belt electron lifetimes
journal, January 2003


Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study
journal, January 2006


Dynamics of Magnetically Trapped Particles
book, January 2014


Evaluating WWLLN performance relative to TRMM/LIS: EVALUATING WWLLN RELATIVE TO TRMM/LIS
journal, May 2013

  • Rudlosky, Scott D.; Shea, Dustin T.
  • Geophysical Research Letters, Vol. 40, Issue 10
  • DOI: 10.1002/grl.50428

Propagation of unducted whistlers from their source lightning: A case study: PROPAGATION OF WHISTLERS
journal, March 2009

  • Santolík, O.; Parrot, M.; Inan, U. S.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A3
  • DOI: 10.1029/2008JA013776

Propagation analysis of plasmaspheric hiss using Polar PWI measurements
journal, March 2001

  • Santolík, O.; Parrot, M.; Storey, L. R. O.
  • Geophysical Research Letters, Vol. 28, Issue 6
  • DOI: 10.1029/2000GL012239

Influence of a ground-based VLF radio transmitter on the inner electron radiation belt: VLF TRANSMITTER
journal, February 2013

  • Selesnick, R. S.; Albert, J. M.; Starks, M. J.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 2
  • DOI: 10.1002/jgra.50095

Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss
journal, November 2008

  • Shprits, Yuri Y.; Subbotin, Dmitriy A.; Meredith, Nigel P.
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 70, Issue 14
  • DOI: 10.1016/j.jastp.2008.06.014

Modeling of Doppler-shifted terrestrial VLF transmitter signals observed by DEMETER
journal, January 2009

  • Starks, M. J.; Bell, T. F.; Quinn, R. A.
  • Geophysical Research Letters, Vol. 36, Issue 12
  • DOI: 10.1029/2009GL038511

Illumination of the plasmasphere by terrestrial very low frequency transmitters: Model validation: ILLUMINATION OF THE PLASMASPHERE BY VLF
journal, September 2008

  • Starks, M. J.; Quinn, R. A.; Ginet, G. P.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A9
  • DOI: 10.1029/2008JA013112

Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations: RADIATION BELT SIMULATION WITH VERB 3-D CODE
journal, December 2011

  • Subbotin, D. A.; Shprits, Y. Y.; Ni, B.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A12
  • DOI: 10.1029/2011JA017019

Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model: MODELING RADIATION BELT WITH DREAM3D
journal, October 2013

  • Tu, Weichao; Cunningham, G. S.; Chen, Y.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 10
  • DOI: 10.1002/jgra.50560

Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt electrons
journal, January 2019


A statistical study of whistler waves observed by Van Allen Probes (RBSP) and lightning detected by WWLLN: MATCH BETWEEN LIGHTNING AND WHISTLERS
journal, March 2016

  • Zheng, Hao; Holzworth, Robert H.; Brundell, James B.
  • Journal of Geophysical Research: Space Physics, Vol. 121, Issue 3
  • DOI: 10.1002/2015JA022010