DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scanning microwave imaging of optically patterned Ge2Sb2Te5

Abstract

The measurement of inhomogeneous conductivity in optically crystallized, amorphous Ge2Sb2Te5 (GST) films is demonstrated via scanning microwave impedance microscopy (MIM). Qualitative consistency with expectations is demonstrated in spots crystallized by focused coherent light at various intensities, exposure times, and film thicknesses. The characterization of process imperfections is demonstrated when a mask is used to optically pattern the nanoscale features of crystalline GST in the amorphous film. In conclusion, these measurements show the ability of MIM to resolve partial crystallization, patterning faults, and other details in optically patterned GST.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [2];  [1];  [1];  [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Ottawa, Ottawa, ON (Canada)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States); European XFEL, Schenefeld (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1504493
Grant/Contract Number:  
AC02-76SF00515; DMR1305731; GBMF4536
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 114; Journal Issue: 9; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Johnston, Scott R., Ng, Edwin, Fong, Scott W., Mok, Walter Y., Park, Jeongwon, Zalden, Peter, Sakdinawat, Anne, Wong, H. -S. Philip, Mabuchi, Hideo, and Shen, Zhi -Xun. Scanning microwave imaging of optically patterned Ge2Sb2Te5. United States: N. p., 2019. Web. doi:10.1063/1.5052018.
Johnston, Scott R., Ng, Edwin, Fong, Scott W., Mok, Walter Y., Park, Jeongwon, Zalden, Peter, Sakdinawat, Anne, Wong, H. -S. Philip, Mabuchi, Hideo, & Shen, Zhi -Xun. Scanning microwave imaging of optically patterned Ge2Sb2Te5. United States. https://doi.org/10.1063/1.5052018
Johnston, Scott R., Ng, Edwin, Fong, Scott W., Mok, Walter Y., Park, Jeongwon, Zalden, Peter, Sakdinawat, Anne, Wong, H. -S. Philip, Mabuchi, Hideo, and Shen, Zhi -Xun. Fri . "Scanning microwave imaging of optically patterned Ge2Sb2Te5". United States. https://doi.org/10.1063/1.5052018. https://www.osti.gov/servlets/purl/1504493.
@article{osti_1504493,
title = {Scanning microwave imaging of optically patterned Ge2Sb2Te5},
author = {Johnston, Scott R. and Ng, Edwin and Fong, Scott W. and Mok, Walter Y. and Park, Jeongwon and Zalden, Peter and Sakdinawat, Anne and Wong, H. -S. Philip and Mabuchi, Hideo and Shen, Zhi -Xun},
abstractNote = {The measurement of inhomogeneous conductivity in optically crystallized, amorphous Ge2Sb2Te5 (GST) films is demonstrated via scanning microwave impedance microscopy (MIM). Qualitative consistency with expectations is demonstrated in spots crystallized by focused coherent light at various intensities, exposure times, and film thicknesses. The characterization of process imperfections is demonstrated when a mask is used to optically pattern the nanoscale features of crystalline GST in the amorphous film. In conclusion, these measurements show the ability of MIM to resolve partial crystallization, patterning faults, and other details in optically patterned GST.},
doi = {10.1063/1.5052018},
journal = {Applied Physics Letters},
number = 9,
volume = 114,
place = {United States},
year = {Fri Mar 08 00:00:00 EST 2019},
month = {Fri Mar 08 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Microstructure-dependent DC set switching behaviors of Ge–Sb–Te-based phase-change random access memory devices accessed by in situ TEM
journal, June 2015

  • Baek, Kyungjoon; Song, Kyung; Son, Sung Kyu
  • NPG Asia Materials, Vol. 7, Issue 6
  • DOI: 10.1038/am.2015.49

Characterization of phase change memory materials using phase change bridge devices
journal, September 2009

  • Krebs, Daniel; Raoux, Simone; Rettner, Charles T.
  • Journal of Applied Physics, Vol. 106, Issue 5
  • DOI: 10.1063/1.3183952

Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material
journal, May 2016

  • Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.
  • Nature Materials, Vol. 15, Issue 8
  • DOI: 10.1038/nmat4649

Electronic, optical and thermal properties of the hexagonal and rocksalt-like Ge 2 Sb 2 Te 5 chalcogenide from first-principle calculations
journal, September 2011

  • Tsafack, Thierry; Piccinini, Enrico; Lee, Bong-Sub
  • Journal of Applied Physics, Vol. 110, Issue 6
  • DOI: 10.1063/1.3639279

Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory
journal, November 2015


Laser induced crystallization of amorphous Ge2Sb2Te5 films
journal, March 2001

  • Weidenhof, V.; Friedrich, I.; Ziegler, S.
  • Journal of Applied Physics, Vol. 89, Issue 6
  • DOI: 10.1063/1.1351868

Density changes upon crystallization of Ge2Sb2.04Te4.74 films
journal, January 2002

  • Njoroge, Walter K.; Wöltgens, Han-Willem; Wuttig, Matthias
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 20, Issue 1
  • DOI: 10.1116/1.1430249

Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials
journal, November 2007

  • Raoux, Simone; Rettner, Charles T.; Jordan-Sweet, Jean L.
  • Journal of Applied Physics, Vol. 102, Issue 9
  • DOI: 10.1063/1.2801000

Thermal conductivity of phase-change material Ge2Sb2Te5
journal, October 2006

  • Lyeo, Ho-Ki; Cahill, David G.; Lee, Bong-Sub
  • Applied Physics Letters, Vol. 89, Issue 15
  • DOI: 10.1063/1.2359354

Dielectric properties of amorphous phase-change materials
journal, March 2017


Measurement of crystal growth velocity in a melt-quenched phase-change material
journal, August 2013

  • Salinga, Martin; Carria, Egidio; Kaldenbach, Andreas
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3371

Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging
journal, October 2012


Phase change materials and phase change memory
journal, August 2014

  • Raoux, Simone; Xiong, Feng; Wuttig, Matthias
  • MRS Bulletin, Vol. 39, Issue 8
  • DOI: 10.1557/mrs.2014.139

Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials
journal, August 2016


How Supercooled Liquid Phase-Change Materials Crystallize: Snapshots after Femtosecond Optical Excitation
journal, August 2015


Nanoscale Electronic Inhomogeneity in In 2 Se 3 Nanoribbons Revealed by Microwave Impedance Microscopy
journal, March 2009

  • Lai, Keji; Peng, Hailin; Kundhikanjana, Worasom
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl900222j

Nanoscale microwave microscopy using shielded cantilever probes
journal, April 2011


Material Requirements for Reversible Phase Change Optical Recording
journal, January 1991


Spatially Resolved Thermometry of Resistive Memory Devices
journal, November 2017


Phase Change Memory
journal, December 2010


Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy
journal, October 2015

  • Lewin, M.; Hauer, B.; Bornhöfft, M.
  • Applied Physics Letters, Vol. 107, Issue 15
  • DOI: 10.1063/1.4933102

Microscopic studies of fast phase transformations in GeSbTe films
journal, January 2001


Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays
journal, March 2016

  • Ríos, Carlos; Hosseini, Peiman; Taylor, Robert A.
  • Advanced Materials, Vol. 28, Issue 23
  • DOI: 10.1002/adma.201506238

Compound materials for reversible, phase‐change optical data storage
journal, September 1986

  • Chen, M.; Rubin, K. A.; Barton, R. W.
  • Applied Physics Letters, Vol. 49, Issue 9
  • DOI: 10.1063/1.97617

Electrical properties of the Ge2Sb2Te5 thin films for phase change memory application
conference, January 2016

  • Lazarenko, P. I.; Sherchenkov, A. A.; Kozyukhin, S. A.
  • REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings
  • DOI: 10.1063/1.4945968

Impact of Oxidation on Ge 2 Sb 2 Te 5 and GeTe Phase-Change Properties
journal, January 2012

  • Gourvest, E.; Pelissier, B.; Vallée, C.
  • Journal of The Electrochemical Society, Vol. 159, Issue 4
  • DOI: 10.1149/2.027204jes

Phase-change materials for non-volatile photonic applications
journal, August 2017


Dielectric properties of amorphous phase-change materials
text, January 2017


Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy
text, January 2009


Picosecond electric-field-induced threshold switching in phase-change materials
text, January 2016


Spatially Resolved Thermometry of Resistive Memory Devices
preprint, January 2017