skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries

Abstract

The design of Faradaic battery electrodes that exhibit high rate capability and long cycle life equivalent to those of the electrodes of electrical double-layer capacitors is a big challenge. Here we report a strategy to fill this performance gap using the concept of Grotthuss proton conduction, in which proton transfer takes place by means of concerted cleavage and formation of O-H bonds in a hydrogen-bonding network. We show that in a hydrated Prussian blue analogue (Turnbull's blue) the abundant lattice water molecules with a contiguous hydrogen-bonding network facilitate Grotthuss proton conduction during redox reactions. When using it as a battery electrode, we find high-rate behaviours at 4,000 C (380 Ag-1, 508 mA cm-2), and a long cycling life of 0.73 million cycles. Furthermore these results for diffusion-free Grotthuss topochemistry of protons, in contrast to orthodox battery electrochemistry, which requires ion diffusion inside electrodes, indicate a potential direction to revolutionize electrochemical energy storage for high-power applications.

Authors:
 [1];  [1];  [1]; ORCiD logo [2];  [2];  [2]; ORCiD logo [2];  [1];  [1];  [3]; ORCiD logo [4];  [2]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Oregon State Univ., Corvallis, OR (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Univ. of California, Riverside, CA (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC)
OSTI Identifier:
1504249
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Wu, Xianyong, Hong, Jessica J., Shin, Woochul, Ma, Lu, Liu, Tongchao, Bi, Xuanxuan, Yuan, Yifei, Qi, Yitong, Surta, T. Wesley, Huang, Wenxi, Neuefeind, Joerg, Wu, Tianpin, Greaney, P. Alex, Lu, Jun, and Ji, Xiulei. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. United States: N. p., 2019. Web. doi:10.1038/s41560-018-0309-7.
Wu, Xianyong, Hong, Jessica J., Shin, Woochul, Ma, Lu, Liu, Tongchao, Bi, Xuanxuan, Yuan, Yifei, Qi, Yitong, Surta, T. Wesley, Huang, Wenxi, Neuefeind, Joerg, Wu, Tianpin, Greaney, P. Alex, Lu, Jun, & Ji, Xiulei. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. United States. doi:10.1038/s41560-018-0309-7.
Wu, Xianyong, Hong, Jessica J., Shin, Woochul, Ma, Lu, Liu, Tongchao, Bi, Xuanxuan, Yuan, Yifei, Qi, Yitong, Surta, T. Wesley, Huang, Wenxi, Neuefeind, Joerg, Wu, Tianpin, Greaney, P. Alex, Lu, Jun, and Ji, Xiulei. Mon . "Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries". United States. doi:10.1038/s41560-018-0309-7. https://www.osti.gov/servlets/purl/1504249.
@article{osti_1504249,
title = {Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries},
author = {Wu, Xianyong and Hong, Jessica J. and Shin, Woochul and Ma, Lu and Liu, Tongchao and Bi, Xuanxuan and Yuan, Yifei and Qi, Yitong and Surta, T. Wesley and Huang, Wenxi and Neuefeind, Joerg and Wu, Tianpin and Greaney, P. Alex and Lu, Jun and Ji, Xiulei},
abstractNote = {The design of Faradaic battery electrodes that exhibit high rate capability and long cycle life equivalent to those of the electrodes of electrical double-layer capacitors is a big challenge. Here we report a strategy to fill this performance gap using the concept of Grotthuss proton conduction, in which proton transfer takes place by means of concerted cleavage and formation of O-H bonds in a hydrogen-bonding network. We show that in a hydrated Prussian blue analogue (Turnbull's blue) the abundant lattice water molecules with a contiguous hydrogen-bonding network facilitate Grotthuss proton conduction during redox reactions. When using it as a battery electrode, we find high-rate behaviours at 4,000 C (380 Ag-1, 508 mA cm-2), and a long cycling life of 0.73 million cycles. Furthermore these results for diffusion-free Grotthuss topochemistry of protons, in contrast to orthodox battery electrochemistry, which requires ion diffusion inside electrodes, indicate a potential direction to revolutionize electrochemical energy storage for high-power applications.},
doi = {10.1038/s41560-018-0309-7},
journal = {Nature Energy},
number = 2,
volume = 4,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Efficient Charge Storage in Dual-Redox Electrochemical Capacitors through Reversible Counterion-Induced Solid Complexation
journal, July 2016

  • Evanko, Brian; Yoo, Seung Joon; Chun, Sang-Eun
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05038

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries
journal, December 2011

  • Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.
  • Nano Letters, Vol. 11, Issue 12, p. 5421-5425
  • DOI: 10.1021/nl203193q

High-power lithium batteries from functionalized carbon-nanotube electrodes
journal, June 2010

  • Lee, Seung Woo; Yabuuchi, Naoaki; Gallant, Betar M.
  • Nature Nanotechnology, Vol. 5, Issue 7
  • DOI: 10.1038/nnano.2010.116

Projector augmented-wave method
journal, December 1994


Hydrogen Storage in the Dehydrated Prussian Blue Analogues M 3 [Co(CN) 6 ] 2 (M = Mn, Fe, Co, Ni, Cu, Zn)
journal, May 2005

  • Kaye, Steven S.; Long, Jeffrey R.
  • Journal of the American Chemical Society, Vol. 127, Issue 18
  • DOI: 10.1021/ja051168t

An All-Organic Proton Battery
journal, March 2017

  • Emanuelsson, Rikard; Sterby, Mia; Strømme, Maria
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.7b00159

An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Coinsertion
journal, July 2017

  • Sun, Wei; Wang, Fei; Hou, Singyuk
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b04471

The proton radius puzzle
journal, May 2015


2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage
journal, November 2017


CHEMISTRY: Enhanced: The Structure of Protonated Water Clusters
journal, May 2004


Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage
journal, May 2017


Ultrafast 2D IR spectroscopy of the excess proton in liquid water
journal, October 2015


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

The nature of the hydrated excess proton in water
journal, February 1999

  • Marx, Dominik; Tuckerman, Mark E.; Hutter, Jürg
  • Nature, Vol. 397, Issue 6720
  • DOI: 10.1038/17579

Low Defect FeFe(CN) 6 Framework as Stable Host Material for High Performance Li-Ion Batteries
journal, August 2016

  • Wu, Xianyong; Shao, Miaomiao; Wu, Chenghao
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 36
  • DOI: 10.1021/acsami.6b06880

High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013

  • Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3601

Where Do Batteries End and Supercapacitors Begin?
journal, March 2014


Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

A Large Protonated Water Cluster H + (H 2 O) 27 in a 3D Metal−Organic Framework
journal, October 2006

  • Wei, Meilin; He, Cheng; Hua, Weijie
  • Journal of the American Chemical Society, Vol. 128, Issue 41
  • DOI: 10.1021/ja0611184

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Ab initiomolecular dynamics for liquid metals
journal, January 1993


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Metal-Organic Framework Cathodes Based on a Vanadium Hexacyanoferrate Prussian Blue Analogue for High-Performance Aqueous Rechargeable Batteries
journal, October 2016

  • Lee, Ji-Hoon; Ali, Ghulam; Kim, Dong Hyun
  • Advanced Energy Materials, Vol. 7, Issue 2
  • DOI: 10.1002/aenm.201601491

Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011

  • Wessells, Colin D.; Huggins, Robert A.; Cui, Yi
  • Nature Communications, Vol. 2, Article No. 550
  • DOI: 10.1038/ncomms1563

Rechargeable Lithium Batteries with Aqueous Electrolytes
journal, May 1994


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors
journal, November 2015


The nature and transport mechanism of hydrated hydroxide ions in aqueous solution
journal, June 2002

  • Tuckerman, Mark E.; Marx, Dominik; Parrinello, Michele
  • Nature, Vol. 417, Issue 6892
  • DOI: 10.1038/nature00797

“Inner” and “outer” active surface of RuO2 electrodes
journal, January 1990


The Curious Case of the Hydrated Proton
journal, August 2011

  • Knight, Chris; Voth, Gregory A.
  • Accounts of Chemical Research, Vol. 45, Issue 1
  • DOI: 10.1021/ar200140h

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability
journal, April 2012

  • Asakura, Daisuke; Okubo, Masashi; Mizuno, Yoshifumi
  • The Journal of Physical Chemistry C, Vol. 116, Issue 15, p. 8364-8369
  • DOI: 10.1021/jp2118949

High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts
journal, June 2008

  • Bai, Yu; Cao, Yiming; Zhang, Jing
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2224

Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order
journal, April 1980

  • Herren, F.; Fischer, P.; Ludi, A.
  • Inorganic Chemistry, Vol. 19, Issue 4
  • DOI: 10.1021/ic50206a032

Proton Conduction with Metal-Organic Frameworks
journal, July 2013


First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius
journal, October 2013

  • Ling, Chen; Chen, Jiajun; Mizuno, Fuminori
  • The Journal of Physical Chemistry C, Vol. 117, Issue 41
  • DOI: 10.1021/jp4078689

Grain-Boundary-Free Super-Proton Conduction of a Solution-Processed Prussian-Blue Nanoparticle Film
journal, April 2017

  • Ono, Kenta; Ishizaki, Manabu; Kanaizuka, Katsuhiko
  • Angewandte Chemie International Edition, Vol. 56, Issue 20
  • DOI: 10.1002/anie.201701759

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Electrolytic conductivity—the hopping mechanism of the proton and beyond
journal, August 2006


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering
journal, May 2010

  • Ohkoshi, Shin-ichi; Nakagawa, Kosuke; Tomono, Keisuke
  • Journal of the American Chemical Society, Vol. 132, Issue 19
  • DOI: 10.1021/ja100385f

Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability
journal, February 2013

  • Asakura, Daisuke; Li, Carissa H.; Mizuno, Yoshifumi
  • Journal of the American Chemical Society, Vol. 135, Issue 7
  • DOI: 10.1021/ja312160v

Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


The Grotthuss mechanism
journal, October 1995


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007

  • Wang, John; Polleux, Julien; Lim, James
  • The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
  • DOI: 10.1021/jp074464w

Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes
journal, March 2011

  • Zhang, Huigang; Yu, Xindi; Braun, Paul V.
  • Nature Nanotechnology, Vol. 6, Issue 5, p. 277-281
  • DOI: 10.1038/nnano.2011.38

Advanced Materials for Energy Storage
journal, February 2010


A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
journal, August 2016


Janus Solid–Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries
journal, August 2015


Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Spectroscopic snapshots of the proton-transfer mechanism in water
journal, December 2016


Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
journal, July 2017


Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
journal, August 2010

  • Luo, Jia-Yan; Cui, Wang-Jun; He, Ping
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.763