skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 28, 2020

Title: Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries

The design of Faradaic battery electrodes that exhibit high rate capability and long cycle life equivalent to those of the electrodes of electrical double-layer capacitors is a big challenge. Here we report a strategy to fill this performance gap using the concept of Grotthuss proton conduction, in which proton transfer takes place by means of concerted cleavage and formation of O-H bonds in a hydrogen-bonding network. We show that in a hydrated Prussian blue analogue (Turnbull's blue) the abundant lattice water molecules with a contiguous hydrogen-bonding network facilitate Grotthuss proton conduction during redox reactions. When using it as a battery electrode, we find high-rate behaviours at 4,000 C (380 Ag -1, 508 mA cm -2), and a long cycling life of 0.73 million cycles. Furthermore these results for diffusion-free Grotthuss topochemistry of protons, in contrast to orthodox battery electrochemistry, which requires ion diffusion inside electrodes, indicate a potential direction to revolutionize electrochemical energy storage for high-power applications.
Authors:
 [1] ;  [1] ;  [1] ; ORCiD logo [2] ;  [2] ;  [2] ; ORCiD logo [2] ;  [1] ;  [1] ;  [3] ; ORCiD logo [4] ;  [2] ; ORCiD logo [3] ; ORCiD logo [2] ; ORCiD logo [1]
  1. Oregon State Univ., Corvallis, OR (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Univ. of California, Riverside, CA (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
National Science Foundation (NSF); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE
OSTI Identifier:
1504249

Wu, Xianyong, Hong, Jessica J., Shin, Woochul, Ma, Lu, Liu, Tongchao, Bi, Xuanxuan, Yuan, Yifei, Qi, Yitong, Surta, T. Wesley, Huang, Wenxi, Neuefeind, Joerg, Wu, Tianpin, Greaney, P. Alex, Lu, Jun, and Ji, Xiulei. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. United States: N. p., Web. doi:10.1038/s41560-018-0309-7.
Wu, Xianyong, Hong, Jessica J., Shin, Woochul, Ma, Lu, Liu, Tongchao, Bi, Xuanxuan, Yuan, Yifei, Qi, Yitong, Surta, T. Wesley, Huang, Wenxi, Neuefeind, Joerg, Wu, Tianpin, Greaney, P. Alex, Lu, Jun, & Ji, Xiulei. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. United States. doi:10.1038/s41560-018-0309-7.
Wu, Xianyong, Hong, Jessica J., Shin, Woochul, Ma, Lu, Liu, Tongchao, Bi, Xuanxuan, Yuan, Yifei, Qi, Yitong, Surta, T. Wesley, Huang, Wenxi, Neuefeind, Joerg, Wu, Tianpin, Greaney, P. Alex, Lu, Jun, and Ji, Xiulei. 2019. "Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries". United States. doi:10.1038/s41560-018-0309-7.
@article{osti_1504249,
title = {Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries},
author = {Wu, Xianyong and Hong, Jessica J. and Shin, Woochul and Ma, Lu and Liu, Tongchao and Bi, Xuanxuan and Yuan, Yifei and Qi, Yitong and Surta, T. Wesley and Huang, Wenxi and Neuefeind, Joerg and Wu, Tianpin and Greaney, P. Alex and Lu, Jun and Ji, Xiulei},
abstractNote = {The design of Faradaic battery electrodes that exhibit high rate capability and long cycle life equivalent to those of the electrodes of electrical double-layer capacitors is a big challenge. Here we report a strategy to fill this performance gap using the concept of Grotthuss proton conduction, in which proton transfer takes place by means of concerted cleavage and formation of O-H bonds in a hydrogen-bonding network. We show that in a hydrated Prussian blue analogue (Turnbull's blue) the abundant lattice water molecules with a contiguous hydrogen-bonding network facilitate Grotthuss proton conduction during redox reactions. When using it as a battery electrode, we find high-rate behaviours at 4,000 C (380 Ag-1, 508 mA cm-2), and a long cycling life of 0.73 million cycles. Furthermore these results for diffusion-free Grotthuss topochemistry of protons, in contrast to orthodox battery electrochemistry, which requires ion diffusion inside electrodes, indicate a potential direction to revolutionize electrochemical energy storage for high-power applications.},
doi = {10.1038/s41560-018-0309-7},
journal = {Nature Energy},
number = 2,
volume = 4,
place = {United States},
year = {2019},
month = {1}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries
journal, December 2011
  • Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.
  • Nano Letters, Vol. 11, Issue 12, p. 5421-5425
  • DOI: 10.1021/nl203193q

Projector augmented-wave method
journal, December 1994

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998
  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Battery materials for ultrafast charging and discharging
journal, March 2009
  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Prototype systems for rechargeable magnesium batteries
journal, October 2000
  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Ab initiomolecular dynamics for liquid metals
journal, January 1993

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000
  • Henkelman, Graeme; Uberuaga, Blas P.; J�nsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011
  • Wessells, Colin D.; Huggins, Robert A.; Cui, Yi
  • Nature Communications, Vol. 2, Article No. 550
  • DOI: 10.1038/ncomms1563

Rechargeable Lithium Batteries with Aqueous Electrolytes
journal, May 1994

Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability
journal, April 2012
  • Asakura, Daisuke; Okubo, Masashi; Mizuno, Yoshifumi
  • The Journal of Physical Chemistry C, Vol. 116, Issue 15, p. 8364-8369
  • DOI: 10.1021/jp2118949

Special points for Brillouin-zone integrations
journal, June 1976
  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Electrochemical Energy Storage for Green Grid
journal, May 2011
  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Ab initio molecular-dynamics simulation of the liquid-metal�amorphous-semiconductor transition in germanium
journal, May 1994

Building better batteries
journal, February 2008
  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007
  • Wang, John; Polleux, Julien; Lim, James
  • The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
  • DOI: 10.1021/jp074464w

Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes
journal, March 2011
  • Zhang, Huigang; Yu, Xindi; Braun, Paul V.
  • Nature Nanotechnology, Vol. 6, Issue 5, p. 277-281
  • DOI: 10.1038/nnano.2011.38