DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum Chemical Approach for Calculating Stability Constants of Mercury Complexes

Abstract

Stability constants are central to the multiscale modeling of the thermodynamic speciation, cycling, and transport of mercury (Hg) and other contaminants in aquatic environments. However, for Hg, experimental values for many relevant complexes are not available, and for others can span ranges in excess of 10 log units. The missing data and large uncertainties lead to significant knowledge gaps in predictions of thermodynamic speciation. As an alternative to experimental measurements, thermodynamic quantities can be calculated with quantum chemical methods. Among these, density functional theory (DFT) with a polarizable continuum solvent combines accuracy with practicability. Here, we present an accurate and quick approach in which we use DFT with continuum solvation to calculate stability constants of Hg complexes with inorganic and low molecular-weight organic ligands in aqueous solution. Specifically, we use the M06/[SDD]6-31+G(d,p) level of theory in combination with a modified version of the SMD solvent model in which the solute radii are reoptimized with a scaled solvent-accessible surface approach. For the set of 37 Hg complexes used for optimization, which contain environmentally relevant functional groups and have reliable experimental stability constants, we obtain a mean unsigned error of 1.4 log units. Testing the method on an independent set of 12more » Hg complexes reproduces the experimental stability constants to a mean unsigned error of 1.6 log units. This approach is a substantial step toward generally applicable rapid stability constant derivation for a wide range of Hg complexes, including those present in dissolved organic matter.« less

Authors:
 [1];  [2];  [3];  [2];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). UT/ORNL Center for Molecular Biophysics. Biosciences Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). UT/ORNL Center for Molecular Biophysics. Biosciences Division
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division
Publication Date:
Research Org.:
Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1475452
Alternate Identifier(s):
OSTI ID: 1504015
Grant/Contract Number:  
SC0016478; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Earth and Space Chemistry
Additional Journal Information:
Journal Volume: 2; Journal Issue: 11; Journal ID: ISSN 2472-3452
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; stability constants; mercury; DFT; continuum models; functional groups of dissolved organic matter

Citation Formats

Devarajan, Deepa, Lian, Peng, Brooks, Scott C., Parks, Jerry M., and Smith, Jeremy C. Quantum Chemical Approach for Calculating Stability Constants of Mercury Complexes. United States: N. p., 2018. Web. doi:10.1021/acsearthspacechem.8b00102.
Devarajan, Deepa, Lian, Peng, Brooks, Scott C., Parks, Jerry M., & Smith, Jeremy C. Quantum Chemical Approach for Calculating Stability Constants of Mercury Complexes. United States. https://doi.org/10.1021/acsearthspacechem.8b00102
Devarajan, Deepa, Lian, Peng, Brooks, Scott C., Parks, Jerry M., and Smith, Jeremy C. Fri . "Quantum Chemical Approach for Calculating Stability Constants of Mercury Complexes". United States. https://doi.org/10.1021/acsearthspacechem.8b00102. https://www.osti.gov/servlets/purl/1475452.
@article{osti_1475452,
title = {Quantum Chemical Approach for Calculating Stability Constants of Mercury Complexes},
author = {Devarajan, Deepa and Lian, Peng and Brooks, Scott C. and Parks, Jerry M. and Smith, Jeremy C.},
abstractNote = {Stability constants are central to the multiscale modeling of the thermodynamic speciation, cycling, and transport of mercury (Hg) and other contaminants in aquatic environments. However, for Hg, experimental values for many relevant complexes are not available, and for others can span ranges in excess of 10 log units. The missing data and large uncertainties lead to significant knowledge gaps in predictions of thermodynamic speciation. As an alternative to experimental measurements, thermodynamic quantities can be calculated with quantum chemical methods. Among these, density functional theory (DFT) with a polarizable continuum solvent combines accuracy with practicability. Here, we present an accurate and quick approach in which we use DFT with continuum solvation to calculate stability constants of Hg complexes with inorganic and low molecular-weight organic ligands in aqueous solution. Specifically, we use the M06/[SDD]6-31+G(d,p) level of theory in combination with a modified version of the SMD solvent model in which the solute radii are reoptimized with a scaled solvent-accessible surface approach. For the set of 37 Hg complexes used for optimization, which contain environmentally relevant functional groups and have reliable experimental stability constants, we obtain a mean unsigned error of 1.4 log units. Testing the method on an independent set of 12 Hg complexes reproduces the experimental stability constants to a mean unsigned error of 1.6 log units. This approach is a substantial step toward generally applicable rapid stability constant derivation for a wide range of Hg complexes, including those present in dissolved organic matter.},
doi = {10.1021/acsearthspacechem.8b00102},
journal = {ACS Earth and Space Chemistry},
number = 11,
volume = 2,
place = {United States},
year = {Fri Sep 28 00:00:00 EDT 2018},
month = {Fri Sep 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic representation of molecular cavities in the unscaled and scaled SAS approaches: sum of the unscaled atomic van der Waals radii and solvent radius (left) multiplied by the scale factor 0.485 in sSAS (right).

Save / Share:

Works referenced in this record:

Interactions between mercury and dissolved organic matter––a review
journal, April 2004


The Genetic Basis for Bacterial Mercury Methylation
journal, February 2013


Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review
journal, February 2013

  • Hsu-Kim, Heileen; Kucharzyk, Katarzyna H.; Zhang, Tong
  • Environmental Science & Technology, Vol. 47, Issue 6
  • DOI: 10.1021/es304370g

Kinetic Controls on the Complexation between Mercury and Dissolved Organic Matter in a Contaminated Environment
journal, November 2009

  • Miller, Carrie L.; Southworth, George; Brooks, Scott
  • Environmental Science & Technology, Vol. 43, Issue 22
  • DOI: 10.1021/es901891t

Marine Biogeochemical Cycling of Mercury
journal, February 2007

  • Fitzgerald, William F.; Lamborg, Carl H.; Hammerschmidt, Chad R.
  • Chemical Reviews, Vol. 107, Issue 2
  • DOI: 10.1021/cr050353m

Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters
journal, March 1999

  • Benoit, Janina M.; Gilmour, Cynthia C.; Mason, Robert P.
  • Environmental Science & Technology, Vol. 33, Issue 6
  • DOI: 10.1021/es9808200

Importance of Dissolved Neutral Mercury Sulfides for Methyl Mercury Production in Contaminated Sediments
journal, April 2007

  • Drott, Andreas; Lambertsson, Lars; Björn, Erik
  • Environmental Science & Technology, Vol. 41, Issue 7
  • DOI: 10.1021/es061724z

Reactive Transport Modeling of Subaqueous Sediment Caps and Implications for the Long-Term Fate of Arsenic, Mercury, and Methylmercury
journal, April 2012

  • Bessinger, Brad A.; Vlassopoulos, Dimitri; Serrano, Susana
  • Aquatic Geochemistry, Vol. 18, Issue 4
  • DOI: 10.1007/s10498-012-9165-4

Geochemical cycling of mercury in a deep, confined aquifer: Insights from biogeochemical reactive transport modeling
journal, April 2013


A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources
journal, June 2014

  • Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik
  • Environmental Science and Pollution Research, Vol. 21, Issue 21
  • DOI: 10.1007/s11356-014-3135-x

A reactive transport model for mercury fate in contaminated soil—sensitivity analysis
journal, June 2015

  • Leterme, Bertrand; Jacques, Diederik
  • Environmental Science and Pollution Research, Vol. 22, Issue 21
  • DOI: 10.1007/s11356-015-4876-x

Refining Thermodynamic Constants for Mercury(II)-Sulfides in Equilibrium with Metacinnabar at Sub-Micromolar Aqueous Sulfide Concentrations
journal, April 2013

  • Drott, A.; Björn, E.; Bouchet, S.
  • Environmental Science & Technology, Vol. 47, Issue 9
  • DOI: 10.1021/es304824n

The sulphur-mercury(II) system in natural waters
journal, April 1991

  • Dyrssen, David; Wedborg, Margareta
  • Water Air & Soil Pollution, Vol. 56, Issue 1
  • DOI: 10.1007/BF00342295

Predicting the Stability Constants of Metal-Ion Complexes from First Principles
journal, September 2013

  • Gutten, Ondrej; Rulíšek, Lubomír
  • Inorganic Chemistry, Vol. 52, Issue 18
  • DOI: 10.1021/ic401037x

Theoretical Study of the Formation of Mercury (Hg 2+ ) Complexes in Solution Using an Explicit Solvation Shell in Implicit Solvent Calculations
journal, September 2014

  • Afaneh, Akef T.; Schreckenbach, Georg; Wang, Feiyue
  • The Journal of Physical Chemistry B, Vol. 118, Issue 38
  • DOI: 10.1021/jp5045089

Theoretical calculations of stability constants and pKa values of metal complexes in solution: application to pyridoxamine–copper(ii) complexes and their biological implications in AGE inhibition
journal, January 2013

  • Casasnovas, Rodrigo; Ortega-Castro, Joaquín; Donoso, Josefa
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 38
  • DOI: 10.1039/c3cp50840d

Why Mercury Prefers Soft Ligands
journal, June 2013

  • Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 14
  • DOI: 10.1021/jz401075b

Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory
journal, March 2015


Prediction of formation constants of metal–ammonia complexes in aqueous solution using density functional theory calculations
journal, January 2004

  • Hancock, Robert D.; Bartolotti, Libero J.
  • Chem. Commun., Issue 5
  • DOI: 10.1039/B312518C

Interaction of Metal Ions with Biomolecular Ligands: How Accurate Are Calculated Free Energies Associated with Metal Ion Complexation?
journal, October 2011

  • Gutten, Ondrej; Beššeová, Ivana; Rulíšek, Lubomír
  • The Journal of Physical Chemistry A, Vol. 115, Issue 41
  • DOI: 10.1021/jp205442p

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Ab initio study of solvated molecules: a new implementation of the polarizable continuum model
journal, June 1996


Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models
journal, August 2008

  • Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; Goddard III, William A.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 32
  • DOI: 10.1021/jp802665d

Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations
journal, December 2012

  • Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 1
  • DOI: 10.1021/ct300296k

Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton
journal, August 2006

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp063552y

Resolution of a Challenge for Solvation Modeling: Calculation of Dicarboxylic Acid Dissociation Constants Using Mixed Discrete–Continuum Solvation Models
journal, May 2012

  • Marenich, Aleksandr V.; Ding, Wendu; Cramer, Christopher J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 11
  • DOI: 10.1021/jz300416r

p K a Calculation of Some Biologically Important Carbon Acids - An Assessment of Contemporary Theoretical Procedures
journal, January 2009

  • Ho, Junming; Coote, Michelle L.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 2
  • DOI: 10.1021/ct800335v

Density Functional Theory Calculation of p K a ’s of Thiols in Aqueous Solution Using Explicit Water Molecules and the Polarizable Continuum Model
journal, June 2016

  • Thapa, Bishnu; Schlegel, H. Bernhard
  • The Journal of Physical Chemistry A, Vol. 120, Issue 28
  • DOI: 10.1021/acs.jpca.6b05040

Modeling Flexible Molecules in Solution: A p K a Case Study
journal, June 2017

  • Haworth, Naomi L.; Wang, Qinrui; Coote, Michelle L.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 27
  • DOI: 10.1021/acs.jpca.7b04133

Calculating Free Energy Changes in Continuum Solvation Models
journal, February 2016


Predicting pKa in Implicit Solvents: Current Status and Future Directions
journal, January 2014

  • Ho, Junming
  • Australian Journal of Chemistry, Vol. 67, Issue 10
  • DOI: 10.1071/CH14040

Are thermodynamic cycles necessary for continuum solvent calculation of pK a s and reduction potentials?
journal, January 2015

  • Ho, Junming
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 4
  • DOI: 10.1039/C4CP04538F

Combining Explicit Quantum Solvent with a Polarizable Continuum Model
journal, October 2017

  • Provorse Long, Makenzie R.; Isborn, Christine M.
  • The Journal of Physical Chemistry B, Vol. 121, Issue 43
  • DOI: 10.1021/acs.jpcb.7b06693

Theoretical Determination of One-Electron Oxidation Potentials for Nucleic Acid Bases
journal, September 2012

  • Psciuk, Brian T.; Lord, Richard L.; Munk, Barbara H.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 12
  • DOI: 10.1021/ct300550x

Calculation of p K a Values of Nucleobases and the Guanine Oxidation Products Guanidinohydantoin and Spiroiminodihydantoin using Density Functional Theory and a Polarizable Continuum Model
journal, December 2008

  • Verdolino, Vincenzo; Cammi, Roberto; Munk, Barbara H.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 51
  • DOI: 10.1021/jp8068877

DFT and TD-DFT investigation of IR and UV spectra of solvated molecules: Comparison of two SCRF continuum models
journal, January 2007

  • Preat, Julien; Loos, Pierre-François; Assfeld, Xavier
  • International Journal of Quantum Chemistry, Vol. 107, Issue 3
  • DOI: 10.1002/qua.21182

Optimization of the cavity size for ab initio MST-SCRF calculations of monovalent ions
journal, May 1994


Solvent polarity scales revisited: a ZINDO-PCM study of the solvatochromism of betaine-30
journal, March 2006


The H2O2+OH→HO2+H2O reaction in aqueous solution from a charge-dependent continuum model of solvation
journal, July 2008

  • Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel
  • The Journal of Chemical Physics, Vol. 129, Issue 1
  • DOI: 10.1063/1.2943315

Optimization of solute cavities and van der Waals parameters inab initio MST-SCRF calculations of neutral molecules
journal, April 1994

  • Bachs, M.; Luque, F. J.; Orozco, Modesto
  • Journal of Computational Chemistry, Vol. 15, Issue 4
  • DOI: 10.1002/jcc.540150408

Toward robust computational electrochemical predicting the environmental fate of organic pollutants
journal, May 2011

  • Sviatenko, Liudmila; Isayev, Olexandr; Gorb, Leonid
  • Journal of Computational Chemistry, Vol. 32, Issue 10
  • DOI: 10.1002/jcc.21803

Quantum Chemical Calculation of p K a s of Environmentally Relevant Functional Groups: Carboxylic Acids, Amines, and Thiols in Aqueous Solution
journal, April 2018

  • Lian, Peng; Johnston, Ryne C.; Parks, Jerry M.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 17
  • DOI: 10.1021/acs.jpca.8b01751

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Solvent-accessible surfaces of proteins and nucleic acids
journal, August 1983


The interpretation of protein structures: Estimation of static accessibility
journal, February 1971


Mechanism of Hg−C Protonolysis in the Organomercurial Lyase MerB
journal, September 2009

  • Parks, Jerry M.; Guo, Hong; Momany, Cory
  • Journal of the American Chemical Society, Vol. 131, Issue 37
  • DOI: 10.1021/ja9016123

Formation of a Dinuclear Mercury(II) Complex with a Regular Bis-Strapped Porphyrin Following a Tunable Cooperative Process
journal, January 2011

  • Motreff, Nicolas; Le Gac, Stéphane; Luhmer, Michel
  • Angewandte Chemie International Edition, Vol. 50, Issue 7
  • DOI: 10.1002/anie.201007007

Mercury Methylation by HgcA: Theory Supports Carbanion Transfer to Hg(II)
journal, December 2013

  • Zhou, Jing; Riccardi, Demian; Beste, Ariana
  • Inorganic Chemistry, Vol. 53, Issue 2
  • DOI: 10.1021/ic401992y

Density functional theory for transition metals and transition metal chemistry
journal, January 2009

  • Cramer, Christopher J.; Truhlar, Donald G.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 46
  • DOI: 10.1039/b907148b

Calculation of Ligand Dissociation Energies in Large Transition-Metal Complexes
journal, March 2018

  • Husch, Tamara; Freitag, Leon; Reiher, Markus
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 5
  • DOI: 10.1021/acs.jctc.8b00061

Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges
journal, October 2007

  • Marenich, Aleksandr V.; Olson, Ryan M.; Kelly, Casey P.
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 6
  • DOI: 10.1021/ct7001418

Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances
journal, July 2003

  • Thompson, Jason D.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 119, Issue 3
  • DOI: 10.1063/1.1579474

Prediction of Vapor Pressures from Self-Solvation Free Energies Calculated by the SM5 Series of Universal Solvation Models
journal, May 2000

  • Winget, Paul; Hawkins, Gregory D.; Cramer, Christopher J.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 19
  • DOI: 10.1021/jp992435i

Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants
journal, February 2006

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 7
  • DOI: 10.1021/jp055336f

Mercury(II) complexes with sulfhydryl containing chelating agents: Stability constant inconsistencies and their resolution
journal, January 1980


Determination of the composition and the stability constants of complexes of mercury(II) with amino acids
journal, January 1974


Interaction of Inorganic Mercury(II) with Polyamines, Polycarboxylates, and Amino Acids
journal, January 2009

  • Foti, Claudia; Giuffrè, Ottavia; Lando, Gabriele
  • Journal of Chemical & Engineering Data, Vol. 54, Issue 3
  • DOI: 10.1021/je800685c

Potentiometric, Calorimetric, and 1 H NMR Investigation on Hg 2+ -Mercaptocarboxylate Interaction in Aqueous Solution
journal, May 2011

  • Cardiano, Paola; Cucinotta, Daniela; Foti, Claudia
  • Journal of Chemical & Engineering Data, Vol. 56, Issue 5
  • DOI: 10.1021/je101007n

Sequestration of Hg 2+ by Some Biologically Important Thiols
journal, December 2011

  • Cardiano, Paola; Falcone, Gabriella; Foti, Claudia
  • Journal of Chemical & Engineering Data, Vol. 56, Issue 12
  • DOI: 10.1021/je200735r

Sequestering ability of some chelating agents towards methylmercury(II)
journal, September 2012

  • Falcone, Gabriella; Foti, Claudia; Gianguzza, Antonio
  • Analytical and Bioanalytical Chemistry, Vol. 405, Issue 2-3
  • DOI: 10.1007/s00216-012-6336-5

Thermodynamic Parameters for the Solvation of Monatomic Ions in Water
journal, December 1999

  • Fawcett, W. Ronald
  • The Journal of Physical Chemistry B, Vol. 103, Issue 50
  • DOI: 10.1021/jp991802n

Hydration of Copper(II): New Insights from Density Functional Theory and the COSMO Solvation Model
journal, September 2008

  • Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; van Duin, Adri C. T.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 38
  • DOI: 10.1021/jp804373p

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
journal, January 1993

  • Woon, David E.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.464303

Ab initio quantum chemistry: Methodology and applications
journal, May 2005


An Implicit Solvent Model for SCC-DFTB with Charge-Dependent Radii
journal, July 2010

  • Hou, Guanhua; Zhu, Xiao; Cui, Qiang
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 8
  • DOI: 10.1021/ct1001818

Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations
journal, January 1996

  • Foresman, James B.; Keith, Todd A.; Wiberg, Kenneth B.
  • The Journal of Physical Chemistry, Vol. 100, Issue 40
  • DOI: 10.1021/jp960488j

An efficient implementation for determining volume polarization in self-consistent reaction field theory
journal, November 2008

  • Vilkas, Marius J.; Zhan, Chang-Guo
  • The Journal of Chemical Physics, Vol. 129, Issue 19
  • DOI: 10.1063/1.3020767

Cysteine Inhibits Mercury Methylation by Geobacter sulfurreducens PCA Mutant Δ omcBESTZ
journal, April 2015


High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens
journal, January 2009

  • Schaefer, Jeffra K.; Morel, François M. M.
  • Nature Geoscience, Vol. 2, Issue 2
  • DOI: 10.1038/ngeo412

Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria
journal, May 2011

  • Schaefer, J. K.; Rocks, S. S.; Zheng, W.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 21
  • DOI: 10.1073/pnas.1105781108

Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry
journal, December 2016

  • Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.
  • Environmental Science & Technology Letters, Vol. 4, Issue 2
  • DOI: 10.1021/acs.estlett.6b00460

Strong Hg(II) Complexation in Municipal Wastewater Effluent and Surface Waters
journal, June 2003

  • Hsu, Heileen; Sedlak, David L.
  • Environmental Science & Technology, Vol. 37, Issue 12
  • DOI: 10.1021/es026438b

Determination of extraction constants of metal diethyldithiocarbamates
journal, January 1968


Zero-Valent Sulfur and Metal Speciation in Sediment Porewaters of Freshwater Lakes
journal, October 2009

  • Wang, Feiyue; Tessier, André
  • Environmental Science & Technology, Vol. 43, Issue 19
  • DOI: 10.1021/es8034973

Works referencing / citing this record:

The AQUA‐MER databases and aqueous speciation server: A web resource for multiscale modeling of mercury speciation
journal, October 2019

  • Lian, Peng; Guo, Luanjing; Devarajan, Deepa
  • Journal of Computational Chemistry, Vol. 41, Issue 2
  • DOI: 10.1002/jcc.26081

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.