DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides

Abstract

Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2-xIr1-ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure-redox coupling arises from the local stabilization of short approximately 1.8 Å metal-oxygen π bonds and approximately 1.4 Å O-O dimers during oxygen redox, which occurs in Li2-xIr1-ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employingmore » oxygen redox chemistry.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [1]; ORCiD logo [4];  [5];  [6];  [7];  [7];  [8]; ORCiD logo [7];  [7]; ORCiD logo [9]; ORCiD logo [10];  [11]; ORCiD logo [12]; ORCiD logo [13]
  1. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource. Stanford Inst. for Materials & Energy Sciences. Applied Energy Division
  2. Stanford Univ., CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Advanced Light Source
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  4. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Materials & Energy Sciences; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Advanced Light Source
  6. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource
  8. Argonne National Lab. (ANL), Argonne, IL (United States). The Advanced Photon Source
  9. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Advanced Light Source
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry
  11. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  12. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource. Applied Energy Division
  13. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Materials & Energy Sciences. Applied Energy Division
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1494840
Alternate Identifier(s):
OSTI ID: 1503542; OSTI ID: 1594911
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231; AC02-06CH11357; SC0012583; ECCS-1542152
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 18; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; batteries; materials chemistry; solid-state chemistry

Citation Formats

Hong, Jihyun, Gent, William E., Xiao, Penghao, Lim, Kipil, Seo, Dong-Hwa, Wu, Jinpeng, Csernica, Peter M., Takacs, Christopher J., Nordlund, Dennis, Sun, Cheng-Jun, Stone, Kevin H., Passarello, Donata, Yang, Wanli, Prendergast, David, Ceder, Gerbrand, Toney, Michael F., and Chueh, William C. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. United States: N. p., 2019. Web. doi:10.1038/s41563-018-0276-1.
Hong, Jihyun, Gent, William E., Xiao, Penghao, Lim, Kipil, Seo, Dong-Hwa, Wu, Jinpeng, Csernica, Peter M., Takacs, Christopher J., Nordlund, Dennis, Sun, Cheng-Jun, Stone, Kevin H., Passarello, Donata, Yang, Wanli, Prendergast, David, Ceder, Gerbrand, Toney, Michael F., & Chueh, William C. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. United States. https://doi.org/10.1038/s41563-018-0276-1
Hong, Jihyun, Gent, William E., Xiao, Penghao, Lim, Kipil, Seo, Dong-Hwa, Wu, Jinpeng, Csernica, Peter M., Takacs, Christopher J., Nordlund, Dennis, Sun, Cheng-Jun, Stone, Kevin H., Passarello, Donata, Yang, Wanli, Prendergast, David, Ceder, Gerbrand, Toney, Michael F., and Chueh, William C. Mon . "Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides". United States. https://doi.org/10.1038/s41563-018-0276-1. https://www.osti.gov/servlets/purl/1494840.
@article{osti_1494840,
title = {Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides},
author = {Hong, Jihyun and Gent, William E. and Xiao, Penghao and Lim, Kipil and Seo, Dong-Hwa and Wu, Jinpeng and Csernica, Peter M. and Takacs, Christopher J. and Nordlund, Dennis and Sun, Cheng-Jun and Stone, Kevin H. and Passarello, Donata and Yang, Wanli and Prendergast, David and Ceder, Gerbrand and Toney, Michael F. and Chueh, William C.},
abstractNote = {Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2-xIr1-ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure-redox coupling arises from the local stabilization of short approximately 1.8 Å metal-oxygen π bonds and approximately 1.4 Å O-O dimers during oxygen redox, which occurs in Li2-xIr1-ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry.},
doi = {10.1038/s41563-018-0276-1},
journal = {Nature Materials},
number = ,
volume = 18,
place = {United States},
year = {Mon Feb 04 00:00:00 EST 2019},
month = {Mon Feb 04 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 211 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Molecular Orbital Principles of Oxygen-Redox Battery Electrodes
journal, October 2017

  • Okubo, Masashi; Yamada, Atsuo
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 42
  • DOI: 10.1021/acsami.7b09835

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds
journal, June 2015


Generating derivative structures at a fixed concentration
journal, June 2012


Nd 2 K 2 IrO 7 and Sm 2 K 2 IrO 7 : Iridium(VI) Oxides Prepared under Ambient Pressure
journal, November 2008

  • Mugavero, Samuel J.; Smith, Mark D.; Yoon, Won-Sub
  • Angewandte Chemie International Edition, Vol. 48, Issue 1
  • DOI: 10.1002/anie.200804045

Projector augmented-wave method
journal, December 1994


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Quantifying ligand effects in high-oxidation-state metal catalysis
journal, August 2017

  • Billow, Brennan S.; McDaniel, Tanner J.; Odom, Aaron L.
  • Nature Chemistry, Vol. 9, Issue 9
  • DOI: 10.1038/nchem.2843

Electrochemical intercalation of sodium in NaxCoO2 bronzes
journal, August 1981


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

Algorithm for generating derivative structures
journal, June 2008


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

First-principles study of the electronic structure and magnetism of CaIrO 3
journal, January 2012


Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, August 2016

  • Luo, Kun; Roberts, Matthew R.; Guerrini, Niccoló
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05111

Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
journal, January 2018

  • Maitra, Urmimala; House, Robert A.; Somerville, James W.
  • Nature Chemistry, Vol. 10, Issue 3
  • DOI: 10.1038/nchem.2923

The Effect of Cation Disorder on the Average Li Intercalation Voltage of Transition-Metal Oxides
journal, May 2016


Modular soft x-ray spectrometer for applications in energy sciences and quantum materials
journal, January 2017

  • Chuang, Yi-De; Shao, Yu-Cheng; Cruz, Alejandro
  • Review of Scientific Instruments, Vol. 88, Issue 1
  • DOI: 10.1063/1.4974356

Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries
journal, January 2016

  • Assat, Gaurav; Delacourt, Charles; Corte, Daniel Alves Dalla
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0531614jes

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode
journal, January 2018


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


L 2 and L 3 measurements of transition-metal 5 d orbital occupancy, spin-orbit effects, and chemical bonding
journal, August 1987


Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

Synthesis and X-ray crystal structure of oxotrimesityliridium(V)
journal, August 1993


Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Resonant Inelastic Scattering Spectra of Free Molecules with Vibrational Resolution
journal, May 2010


Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4
journal, December 2017


Potential hysteresis between charge and discharge reactions in Li1.2Ni0.13Mn0.54Co0.13O2 for lithium ion batteries
journal, February 2017


Phase diagrams of lithium transition metal oxides: investigations from first principles
journal, September 1999


XANES and EXAFS Studies on the Ir-O Bond Covalency in Ionic Iridium Perovskites
journal, August 1995

  • Choy, Jin-Ho; Kim, Dong-Kuk; Hwang, Sung-Ho
  • Journal of the American Chemical Society, Vol. 117, Issue 33
  • DOI: 10.1021/ja00138a010

Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li 1 - x Co 1/3 Ni 1/3 Mn 1/3 O 2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy
journal, December 2005

  • Yoon, Won-Sub; Balasubramanian, Mahalingam; Chung, Kyung Yoon
  • Journal of the American Chemical Society, Vol. 127, Issue 49
  • DOI: 10.1021/ja0530568

Spectroscopic Signature of Oxidized Oxygen States in Peroxides
journal, October 2018

  • Zhuo, Zengqing; Pemmaraju, Chaitanya Das; Vinson, John
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 21
  • DOI: 10.1021/acs.jpclett.8b02757

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Origin of High Capacity and Poor Cycling Stability of Li-Rich Layered Oxides: A Long-Duration in Situ Synchrotron Powder Diffraction Study
journal, May 2018


Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3
journal, February 2003

  • Kobayashi, Hironori; Tabuchi, Mitsuharu; Shikano, Masahiro
  • Journal of Materials Chemistry, Vol. 13, Issue 4
  • DOI: 10.1039/b207282c

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


The active site of low-temperature methane hydroxylation in iron-containing zeolites
journal, August 2016

  • Snyder, Benjamin E. R.; Vanelderen, Pieter; Bols, Max L.
  • Nature, Vol. 536, Issue 7616
  • DOI: 10.1038/nature19059

Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH
journal, November 2010

  • Surendranath, Yogesh; Kanan, Matthew W.; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 132, Issue 46
  • DOI: 10.1021/ja106102b

Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion
journal, October 2014

  • Mohanty, Debasish; Li, Jianlin; Abraham, Daniel P.
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm5031415

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Examining Hysteresis in Composite x Li 2 MnO 3 ·(1– x )LiMO 2 Cathode Structures
journal, March 2013

  • Croy, Jason R.; Gallagher, Kevin G.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry C, Vol. 117, Issue 13
  • DOI: 10.1021/jp312658q

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Lithium Extraction Mechanism in Li-Rich Li 2 MnO 3 Involving Oxygen Hole Formation and Dimerization
journal, September 2016


Multiple Scattering Calculations of Bonding and X-ray Absorption Spectroscopy of Manganese Oxides
journal, April 2003

  • Gilbert, B.; Frazer, B. H.; Belz, A.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 16
  • DOI: 10.1021/jp021493s

Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


Variable character of O--O and M--O bonding in side-on ( 2) 1:1 metal complexes of O2
journal, March 2003

  • Cramer, C. J.; Tolman, W. B.; Theopold, K. H.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 7
  • DOI: 10.1073/pnas.0535926100

Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms
journal, July 1997

  • Wales, David J.; Doye, Jonathan P. K.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 28
  • DOI: 10.1021/jp970984n

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Elucidating anionic oxygen activity in lithium-rich layered oxides
journal, March 2018


Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
journal, April 2016

  • Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11397

Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes
journal, February 2015

  • Dogan, Fulya; Long, Brandon R.; Croy, Jason R.
  • Journal of the American Chemical Society, Vol. 137, Issue 6
  • DOI: 10.1021/ja511299y

Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5 Mn 1.5 O 4 Electrodes
journal, November 2015

  • Qiao, Ruimin; Wray, L. Andrew; Kim, Jung-Hyun
  • The Journal of Physical Chemistry C, Vol. 119, Issue 49
  • DOI: 10.1021/acs.jpcc.5b07479

Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
journal, December 2017


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

First-Cycle Simulation for Li-Rich Layered Oxide Cathode Material x Li 2 MnO 3 (1- x )Li M O 2 ( x = 0.4)
journal, January 2018


Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2–Na 0.67 [Mn 0.66 Fe 0.20 Cu 0.14 ]O 2
journal, July 2017


Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox
journal, December 2017


Highly Reversible Oxygen-Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)
journal, April 2018

  • Mortemard de Boisse, Benoit; Nishimura, Shin-ichi; Watanabe, Eriko
  • Advanced Energy Materials, Vol. 8, Issue 20
  • DOI: 10.1002/aenm.201800409

Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction
journal, April 2020


Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets
journal, May 2021


High-resolution X-ray luminescence extension imaging
journal, February 2021


Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Nd 2 K 2 IrO 7 and Sm 2 K 2 IrO 7 : Iridium(VI) Oxides Prepared under Ambient Pressure
journal, January 2009

  • Mugavero, Samuel J.; Smith, Mark D.; Yoon, Won-Sub
  • Angewandte Chemie International Edition, Vol. 48, Issue 6
  • DOI: 10.1002/anie.200990012

Spectroscopic Signature of Oxidized Oxygen States in Peroxides
text, January 2018


Works referencing / citing this record:

Tuning Oxygen Redox Chemistry in Li‐Rich Mn‐Based Layered Oxide Cathodes by Modulating Cation Arrangement
journal, September 2019

  • Zhang, Jicheng; Cheng, Fangyi; Chou, Shulei
  • Advanced Materials, Vol. 31, Issue 42
  • DOI: 10.1002/adma.201901808

Insight of a Phase Compatible Surface Coating for Long‐Durable Li‐Rich Layered Oxide Cathode
journal, July 2019


Fundamental Insights from a Single‐Crystal Sodium Iridate Battery
journal, March 2020

  • Tepavcevic, Sanja; Zheng, Hong; Hinks, David G.
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903128

Reversible Oxygen Redox Chemistry in Aqueous Zinc‐Ion Batteries
journal, April 2019


Anisotropically Electrochemical–Mechanical Evolution in Solid‐State Batteries and Interfacial Tailored Strategy
journal, November 2019


Reversible Oxygen Redox Chemistry in Aqueous Zinc‐Ion Batteries
journal, May 2019

  • Wan, Fang; Zhang, Yan; Zhang, Linlin
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201902679

Anisotropically Electrochemical–Mechanical Evolution in Solid‐State Batteries and Interfacial Tailored Strategy
journal, November 2019

  • Sun, Nan; Liu, Qingsong; Cao, Yi
  • Angewandte Chemie International Edition, Vol. 58, Issue 51
  • DOI: 10.1002/anie.201910993

Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials
journal, July 2019


Ultrahigh power and energy density in partially ordered lithium-ion cathode materials
journal, March 2020


Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes
journal, January 2020


A paradigm of storage batteries
journal, January 2019


Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes
journal, January 2020

  • Clément, R. J.; Lun, Z.; Ceder, G.
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee02803j

Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes
journal, January 2019

  • Naylor, Andrew J.; Makkos, Eszter; Maibach, Julia
  • Journal of Materials Chemistry A, Vol. 7, Issue 44
  • DOI: 10.1039/c9ta09019c

Charge-transfer descriptor for the cycle performance of β-Li 2 MO 3 cathodes: role of oxygen dimers
journal, January 2020

  • Kim, Inkyung; Do, Joongyeop; Kim, Heejin
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/c9ta12426h

Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst
journal, March 2020

  • Yang, Chunzhen; Rousse, Gwenaëlle; Louise Svane, Katrine
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-15231-x