skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice strain causes non-radiative losses in halide perovskites

Abstract

Halide perovskites are promising semiconductors for inexpensive, high-performance optoelectronics. Despite a remarkable defect tolerance compared to conventional semiconductors, perovskite thin films still show substantial microscale heterogeneity in key properties such as luminescence efficiency and device performance. However, the origin of the variations remains a topic of debate, and a precise understanding is critical to the rational design of defect management strategies. Through a multi-scale investigation – combining correlative synchrotron scanning X-ray diffraction and time-resolved photoluminescence measurements on the same scan area – we reveal that lattice strain is directly associated with enhanced defect concentrations and non-radiative recombination. The strain patterns have a complex heterogeneity across multiple length scales. We propose that strain arises during the film growth and crystallization and provides a driving force for defect formation. Lastly, our work sheds new light on the presence and influence of structural defects in halide perovskites, revealing new pathways to manage defects and eliminate losses.

Authors:
 [1];  [2];  [3];  [2];  [1];  [4];  [2];  [2];  [2];  [5];  [6];  [3];  [5];  [7];  [8];  [3];  [2];  [9];  [1];  [10] more »;  [11] « less
  1. CSIRO Energy Centre, Mayfield West (Australia)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Univ. of Cambridge, Cambridge (United Kingdom)
  4. Yonsei Univ., Seoul (Korea)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xi'an Jiaotong Univ., Xi'an (China)
  7. Cardiff Univ., Cardiff (United Kingdom)
  8. European Synchrotron Radiation Facility, Grenoble (France)
  9. Yonsei Univ., Seoul (Korea); Imperial College London, London (United Kingdom)
  10. Univ. of Sheffield, Sheffield (United Kingdom)
  11. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Cambridge, Cambridge (United Kingdom)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1503396
Alternate Identifier(s):
OSTI ID: 1492097; OSTI ID: 1503659
Grant/Contract Number:  
AC02-05CH11231; AC02-05CH1123
Resource Type:
Published Article
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 12; Journal Issue: 2; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Jones, Timothy W., Osherov, Anna, Alsari, Mejd, Sponseller, Melany, Duck, Benjamin C., Jung, Young -Kwang, Settens, Charles, Niroui, Farnaz, Brenes, Roberto, Stan, Camelia V., Li, Yao, Abdi-Jalebi, Mojtaba, Tamura, Nobumichi, Macdonald, J. Emyr, Burghammer, Manfred, Friend, Richard H., Bulović, Vladimir, Walsh, Aron, Wilson, Gregory J., Lilliu, Samuele, and Stranks, Samuel D. Lattice strain causes non-radiative losses in halide perovskites. United States: N. p., 2019. Web. doi:10.1039/c8ee02751j.
Jones, Timothy W., Osherov, Anna, Alsari, Mejd, Sponseller, Melany, Duck, Benjamin C., Jung, Young -Kwang, Settens, Charles, Niroui, Farnaz, Brenes, Roberto, Stan, Camelia V., Li, Yao, Abdi-Jalebi, Mojtaba, Tamura, Nobumichi, Macdonald, J. Emyr, Burghammer, Manfred, Friend, Richard H., Bulović, Vladimir, Walsh, Aron, Wilson, Gregory J., Lilliu, Samuele, & Stranks, Samuel D. Lattice strain causes non-radiative losses in halide perovskites. United States. doi:10.1039/c8ee02751j.
Jones, Timothy W., Osherov, Anna, Alsari, Mejd, Sponseller, Melany, Duck, Benjamin C., Jung, Young -Kwang, Settens, Charles, Niroui, Farnaz, Brenes, Roberto, Stan, Camelia V., Li, Yao, Abdi-Jalebi, Mojtaba, Tamura, Nobumichi, Macdonald, J. Emyr, Burghammer, Manfred, Friend, Richard H., Bulović, Vladimir, Walsh, Aron, Wilson, Gregory J., Lilliu, Samuele, and Stranks, Samuel D. Tue . "Lattice strain causes non-radiative losses in halide perovskites". United States. doi:10.1039/c8ee02751j.
@article{osti_1503396,
title = {Lattice strain causes non-radiative losses in halide perovskites},
author = {Jones, Timothy W. and Osherov, Anna and Alsari, Mejd and Sponseller, Melany and Duck, Benjamin C. and Jung, Young -Kwang and Settens, Charles and Niroui, Farnaz and Brenes, Roberto and Stan, Camelia V. and Li, Yao and Abdi-Jalebi, Mojtaba and Tamura, Nobumichi and Macdonald, J. Emyr and Burghammer, Manfred and Friend, Richard H. and Bulović, Vladimir and Walsh, Aron and Wilson, Gregory J. and Lilliu, Samuele and Stranks, Samuel D.},
abstractNote = {Halide perovskites are promising semiconductors for inexpensive, high-performance optoelectronics. Despite a remarkable defect tolerance compared to conventional semiconductors, perovskite thin films still show substantial microscale heterogeneity in key properties such as luminescence efficiency and device performance. However, the origin of the variations remains a topic of debate, and a precise understanding is critical to the rational design of defect management strategies. Through a multi-scale investigation – combining correlative synchrotron scanning X-ray diffraction and time-resolved photoluminescence measurements on the same scan area – we reveal that lattice strain is directly associated with enhanced defect concentrations and non-radiative recombination. The strain patterns have a complex heterogeneity across multiple length scales. We propose that strain arises during the film growth and crystallization and provides a driving force for defect formation. Lastly, our work sheds new light on the presence and influence of structural defects in halide perovskites, revealing new pathways to manage defects and eliminate losses.},
doi = {10.1039/c8ee02751j},
journal = {Energy & Environmental Science},
number = 2,
volume = 12,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/c8ee02751j

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Characterising structural heterogeneity in MAPbI3 films on glass cover slips by $\mu$XRD. (a) Comparison of the macroscopic bulk XRD pattern with 2 the mXRD pattern (both collected at 240 K) summed over a 70 x 70 $\mu$m2 spatial region, with the key reflections labelled. Inset: SEM image ofmore » the perovskite grains along with ~ten-micrometer-sized Au fiducial marker particles. (b) Local $\langle$220$\rangle$ and (c) $\langle$222$\rangle$ diffraction peak q maps revealing substantial structural heterogeneity. (d and e) Selected slices of the $\langle$220$\rangle$ (red) and $\langle$222$\rangle$ (blue) through the maps in (b and c) illustrating the complex strain patterns present within the film. Vertical lines indicate peak position as determined through peak profile fitting and are a guide to the eye. (f) Microstrain map for the $\langle$220$\rangle$ diffraction peak. (g) Histogram of the calculated microstrain and corresponding scattering vector q for the $\langle$220$\rangle$ diffraction peak. The solid line is a linear regression fit to a scatter plot of the data, revealing a statistically-significant correlation (negligible p-value; see Methods).« less

Save / Share:

Works referenced in this record:

Metal-halide perovskites for photovoltaic and light-emitting devices
journal, May 2015

  • Stranks, Samuel D.; Snaith, Henry J.
  • Nature Nanotechnology, Vol. 10, Issue 5
  • DOI: 10.1038/nnano.2015.90

X-ray line broadening from filed aluminium and wolfram
journal, January 1953


Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit
journal, July 2012

  • Miller, Owen D.; Yablonovitch, Eli; Kurtz, Sarah R.
  • IEEE Journal of Photovoltaics, Vol. 2, Issue 3, p. 303-311
  • DOI: 10.1109/JPHOTOV.2012.2198434

Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells
journal, November 2017


Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals
journal, September 2017


The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains
journal, March 2018

  • Brenes, Roberto; Eames, Christopher; Bulović, Vladimir
  • Advanced Materials, Vol. 30, Issue 15
  • DOI: 10.1002/adma.201706208

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
journal, June 2017


Mapping Morphological and Structural Properties of Lead Halide Perovskites by Scanning Nanofocus XRD
journal, October 2016

  • Lilliu, Samuele; Dane, Thomas G.; Alsari, Mejd
  • Advanced Functional Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adfm.201603446

Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
journal, March 2018

  • Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania
  • Nature, Vol. 555, Issue 7697
  • DOI: 10.1038/nature25989

Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency
journal, April 2018

  • Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.
  • Nature Photonics, Vol. 12, Issue 6
  • DOI: 10.1038/s41566-018-0154-z

Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite
journal, October 2016


A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source
journal, March 2009

  • Kunz, Martin; Tamura, Nobumichi; Chen, Kai
  • Review of Scientific Instruments, Vol. 80, Issue 3
  • DOI: 10.1063/1.3096295

Spontaneous Defect Annihilation in CH 3 NH 3 PbI 3 Thin Films at Room Temperature Revealed by Time-Resolved Photoluminescence Spectroscopy
journal, January 2015

  • Yamada, Yasuhiro; Endo, Masaru; Wakamiya, Atsushi
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 3
  • DOI: 10.1021/jz5026596

A theory of the electrical properties of liquid metals: III. the resistivity of binary alloys
journal, January 1965


Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States
journal, September 2014


Nonradiative Losses in Metal Halide Perovskites
journal, June 2017


Clues from defect photochemistry
journal, April 2018


The influence of the Rashba effect
journal, April 2018


Efficient perovskite solar cells by metal ion doping
journal, January 2016

  • Wang, Jacob Tse-Wei; Wang, Zhiping; Pathak, Sandeep
  • Energy & Environmental Science, Vol. 9, Issue 9
  • DOI: 10.1039/C6EE01969B

Twinning in ferroelectric and ferroelastic ceramics: stress relief
journal, June 1990


In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation
journal, January 2018

  • Alsari, Mejd; Bikondoa, Oier; Bishop, James
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE03013D

Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy
journal, June 2015

  • Guo, Zhi; Manser, Joseph S.; Wan, Yan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8471

Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers
journal, January 2016

  • Momblona, Cristina; Gil-Escrig, Lidón; Bandiello, Enrico
  • Energy Environ. Sci., Vol. 9, Issue 11
  • DOI: 10.1039/C6EE02100J

Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells
journal, March 2017


Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells
journal, November 2015

  • Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10030

Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films
journal, August 2016

  • Cao, Jing; Jing, Xiaojing; Yan, Juanzhu
  • Journal of the American Chemical Society, Vol. 138, Issue 31
  • DOI: 10.1021/jacs.6b04924

Photo-induced halide redistribution in organic–inorganic perovskite films
journal, May 2016

  • deQuilettes, Dane W.; Zhang, Wei; Burlakov, Victor M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11683

Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
journal, February 2014

  • Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
  • Applied Physics Letters, Vol. 104, Issue 6
  • DOI: 10.1063/1.4864778

Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide
journal, October 2015


Non-radiative transitions in semiconductors
journal, December 1981


Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution
journal, April 2006

  • Guo, Zhirui; Zhang, Yu; DuanMu, Yun
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 278, Issue 1-3
  • DOI: 10.1016/j.colsurfa.2005.11.075

Impact of microstructure on local carrier lifetime in perovskite solar cells
journal, April 2015


Orientation of Ferroelectric Domains and Disappearance upon Heating Methylammonium Lead Triiodide Perovskite from Tetragonal to Cubic Phase
journal, March 2018

  • Vorpahl, Sarah M.; Giridharagopal, Rajiv; Eperon, Giles E.
  • ACS Applied Energy Materials, Vol. 1, Issue 4
  • DOI: 10.1021/acsaem.7b00330

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Charge Carriers in Planar and Meso-Structured Organic–Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States
journal, July 2015

  • Hutter, Eline M.; Eperon, Giles E.; Stranks, Samuel D.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 15
  • DOI: 10.1021/acs.jpclett.5b01361

Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications
journal, January 2013

  • Baikie, Tom; Fang, Yanan; Kadro, Jeannette M.
  • Journal of Materials Chemistry A, Vol. 1, Issue 18
  • DOI: 10.1039/c3ta10518k

Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite
journal, July 2016


Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion
journal, September 2017


Energy conversion approaches and materials for high-efficiency photovoltaics
journal, December 2016

  • Green, Martin A.; Bremner, Stephen P.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4676

Trapping of Minority Carriers in Silicon. II. n -Type Silicon
journal, October 1955


Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Perovskite photonic sources
journal, April 2016


Microstructural Characterisations of Perovskite Solar Cells - From Grains to Interfaces: Techniques, Features, and Challenges
journal, September 2017

  • Rothmann, Mathias Uller; Li, Wei; Etheridge, Joanne
  • Advanced Energy Materials, Vol. 7, Issue 23
  • DOI: 10.1002/aenm.201700912

Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation
journal, July 2016


Mapping the Photoresponse of CH 3 NH 3 PbI 3 Hybrid Perovskite Thin Films at the Nanoscale
journal, May 2016


Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations
journal, February 2017


    Works referencing / citing this record:

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.