DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal‐Guided Selective Growth of 2D Materials: Demonstration of a Bottom‐Up CMOS Inverter

Abstract

Abstract 2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large‐area electronics and circuits strongly relies on wafer‐scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal‐guided selective growth (MGSG), is reported. The success of control over the transition‐metal‐precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p‐ and n‐type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom‐up complementary metal‐oxide‐semiconductor inverter based on p‐type WSe 2 and n‐type MoSe 2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.

Authors:
 [1];  [1];  [2];  [3];  [1];  [1];  [1];  [1];  [1];  [2];  [4];  [5]; ORCiD logo [1];  [6]
  1. Physical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia
  2. Department of Electrophysics National Chiao Tung University Hsinchu 300 Taiwan
  3. School of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA
  4. School of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA, Kavli Institute at Cornell for Nanoscale Science Cornell University Ithaca NY 14850 USA
  5. Department of Applied Physics Nagoya University Nagoya 464‐8603 Japan
  6. Physical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia, School of Materials Science and Engineering University of New South Wales Sydney 2052 Australia
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1503363
Grant/Contract Number:  
DE‐AC02‐05CH11231
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 31 Journal Issue: 18; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Chiu, Ming‐Hui, Tang, Hao‐Ling, Tseng, Chien‐Chih, Han, Yimo, Aljarb, Areej, Huang, Jing‐Kai, Wan, Yi, Fu, Jui‐Han, Zhang, Xixiang, Chang, Wen‐Hao, Muller, David A., Takenobu, Taishi, Tung, Vincent, and Li, Lain‐Jong. Metal‐Guided Selective Growth of 2D Materials: Demonstration of a Bottom‐Up CMOS Inverter. Germany: N. p., 2019. Web. doi:10.1002/adma.201900861.
Chiu, Ming‐Hui, Tang, Hao‐Ling, Tseng, Chien‐Chih, Han, Yimo, Aljarb, Areej, Huang, Jing‐Kai, Wan, Yi, Fu, Jui‐Han, Zhang, Xixiang, Chang, Wen‐Hao, Muller, David A., Takenobu, Taishi, Tung, Vincent, & Li, Lain‐Jong. Metal‐Guided Selective Growth of 2D Materials: Demonstration of a Bottom‐Up CMOS Inverter. Germany. https://doi.org/10.1002/adma.201900861
Chiu, Ming‐Hui, Tang, Hao‐Ling, Tseng, Chien‐Chih, Han, Yimo, Aljarb, Areej, Huang, Jing‐Kai, Wan, Yi, Fu, Jui‐Han, Zhang, Xixiang, Chang, Wen‐Hao, Muller, David A., Takenobu, Taishi, Tung, Vincent, and Li, Lain‐Jong. Mon . "Metal‐Guided Selective Growth of 2D Materials: Demonstration of a Bottom‐Up CMOS Inverter". Germany. https://doi.org/10.1002/adma.201900861.
@article{osti_1503363,
title = {Metal‐Guided Selective Growth of 2D Materials: Demonstration of a Bottom‐Up CMOS Inverter},
author = {Chiu, Ming‐Hui and Tang, Hao‐Ling and Tseng, Chien‐Chih and Han, Yimo and Aljarb, Areej and Huang, Jing‐Kai and Wan, Yi and Fu, Jui‐Han and Zhang, Xixiang and Chang, Wen‐Hao and Muller, David A. and Takenobu, Taishi and Tung, Vincent and Li, Lain‐Jong},
abstractNote = {Abstract 2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large‐area electronics and circuits strongly relies on wafer‐scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal‐guided selective growth (MGSG), is reported. The success of control over the transition‐metal‐precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p‐ and n‐type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom‐up complementary metal‐oxide‐semiconductor inverter based on p‐type WSe 2 and n‐type MoSe 2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.},
doi = {10.1002/adma.201900861},
journal = {Advanced Materials},
number = 18,
volume = 31,
place = {Germany},
year = {Mon Mar 25 00:00:00 EDT 2019},
month = {Mon Mar 25 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201900861

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide
journal, May 2013

  • van der Zande, Arend M.; Huang, Pinshane Y.; Chenet, Daniel A.
  • Nature Materials, Vol. 12, Issue 6, p. 554-561
  • DOI: 10.1038/nmat3633

On the mobility and contact resistance evaluation for transistors based on MoS 2 or two-dimensional semiconducting atomic crystals
journal, March 2014

  • Chang, Hsiao-Yu; Zhu, Weinan; Akinwande, Deji
  • Applied Physics Letters, Vol. 104, Issue 11
  • DOI: 10.1063/1.4868536

Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils
journal, October 2015

  • Gao, Yang; Liu, Zhibo; Sun, Dong-Ming
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9569

High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
journal, April 2015


Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides
journal, April 2016


Mobility Improvement and Temperature Dependence in MoSe 2 Field-Effect Transistors on Parylene-C Substrate
journal, April 2014

  • Chamlagain, Bhim; Li, Qing; Ghimire, Nirmal Jeevi
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn501150r

Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface
journal, July 2015


Integrated Circuits Based on Bilayer MoS2 Transistors
journal, January 2012

  • Wang, Han; Yu, Lili; Lee, Yi-Hsien
  • Nano Letters, Vol. 12, Issue 9, p. 4674-4680
  • DOI: 10.1021/nl302015v

Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions
journal, March 2014

  • Ross, Jason S.; Klement, Philip; Jones, Aaron M.
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.26

Highly Flexible and High-Performance Complementary Inverters of Large-Area Transition Metal Dichalcogenide Monolayers
journal, March 2016

  • Pu, Jiang; Funahashi, Kazuma; Chen, Chang-Hsiao
  • Advanced Materials, Vol. 28, Issue 21
  • DOI: 10.1002/adma.201503872

Formation of a Stable pn Junction in a Liquid-Gated MoS 2 Ambipolar Transistor
journal, June 2013

  • Zhang, Y. J.; Ye, J. T.; Yomogida, Y.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl400902v

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Effect of oxygen and ozone on p-type doping of ultra-thin WSe 2 and MoSe 2 field effect transistors
journal, January 2016

  • Wang, Shunfeng; Zhao, Weijie; Giustiniano, Francesco
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 6
  • DOI: 10.1039/C5CP07194A

Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide
journal, March 2014

  • Baugher, Britton W. H.; Churchill, Hugh O. H.; Yang, Yafang
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.25

Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization
journal, January 2012

  • Lin, Yu-Chuan; Zhang, Wenjing; Huang, Jing-Kai
  • Nanoscale, Vol. 4, Issue 20
  • DOI: 10.1039/c2nr31833d

Large-scale chemical assembly of atomically thin transistors and circuits
journal, July 2016


Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
journal, September 2014

  • Duan, Xidong; Wang, Chen; Shaw, Jonathan C.
  • Nature Nanotechnology, Vol. 9, Issue 12, p. 1024-1030
  • DOI: 10.1038/nnano.2014.222

Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2
journal, April 2014

  • Wang, Xingli; Gong, Yongji; Shi, Gang
  • ACS Nano, Vol. 8, Issue 5, p. 5125-5131
  • DOI: 10.1021/nn501175k

Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe 2 , MoS 2 , and MoSe 2 Transistors
journal, February 2016


Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition
journal, March 2012

  • Lee, Yi-Hsien; Zhang, Xin-Quan; Zhang, Wenjing
  • Advanced Materials, Vol. 24, Issue 17, p. 2320-2325
  • DOI: 10.1002/adma.201104798

Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors
journal, June 2010

  • Xu, Yong; Minari, Takeo; Tsukagoshi, Kazuhito
  • Journal of Applied Physics, Vol. 107, Issue 11
  • DOI: 10.1063/1.3432716

Multilayer Graphene–WSe 2 Heterostructures for WSe 2 Transistors
journal, October 2016


Near-unity photoluminescence quantum yield in MoS2
journal, November 2015


High-Gain Inverters Based on WSe 2 Complementary Field-Effect Transistors
journal, April 2014

  • Tosun, Mahmut; Chuang, Steven; Fang, Hui
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn5009929

Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers
journal, November 2012

  • Larentis, Stefano; Fallahazad, Babak; Tutuc, Emanuel
  • Applied Physics Letters, Vol. 101, Issue 22, Article No. 223104
  • DOI: 10.1063/1.4768218

Solar-energy conversion and light emission in an atomic monolayer p–n diode
journal, March 2014

  • Pospischil, Andreas; Furchi, Marco M.; Mueller, Thomas
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.14

Concurrent Synthesis of High-Performance Monolayer Transition Metal Disulfides
journal, March 2017

  • Sun, Linfeng; Leong, Wei Sun; Yang, Shize
  • Advanced Functional Materials, Vol. 27, Issue 15
  • DOI: 10.1002/adfm.201605896

Large-Area Synthesis of Highly Crystalline WSe 2 Monolayers and Device Applications
journal, December 2013

  • Huang, Jing-Kai; Pu, Jiang; Hsu, Chang-Lung
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405719x

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Spectroscopic Signatures for Interlayer Coupling in MoS 2 –WSe 2 van der Waals Stacking
journal, August 2014

  • Chiu, Ming-Hui; Li, Ming-Yang; Zhang, Wengjing
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn504229z

High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts
journal, June 2012

  • Fang, Hui; Chuang, Steven; Chang, Ting Chia
  • Nano Letters, Vol. 12, Issue 7, p. 3788-3792
  • DOI: 10.1021/nl301702r

Properties of Individual Dopant Atoms in Single-Layer MoS 2 : Atomic Structure, Migration, and Enhanced Reactivity
journal, February 2014

  • Lin, Yung-Chang; Dumcenco, Dumitru O.; Komsa, Hannu-Pekka
  • Advanced Materials, Vol. 26, Issue 18
  • DOI: 10.1002/adma.201304985

Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors
journal, August 2014

  • Huang, Chunming; Wu, Sanfeng; Sanchez, Ana M.
  • Nature Materials, Vol. 13, Issue 12, p. 1096-1101
  • DOI: 10.1038/nmat4064