skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying chiral exchange interaction for Néel-type skyrmions via Lorentz transmission electron microscopy

Abstract

Magnetic skyrmions are topological spin textures that have been observed in bulk magnets and magnetic multilayers. For bulk magnetic materials, their noncollinear spin profiles have often been studied by using Lorentz transmission electron microscopy (TEM). We experimentally utilized Lorentz TEM imaging to study an inversion asymmetric [Pt(1.5nm)/Co(1 nm)/W(1 nm)]8 heterostructure that exhibits Neel-type skyrmions at zero field. By tracking the evolution of skyrmion diameters as a function of magnetic fields, we determined the strength of the interfacial Dzyaloshinskii-Moriya interaction (DMI). Our results suggest that in situ Lorentz TEM imaging combined with simulations can provide valuable quantitative information about the interfacial DMI strengths, which can be helpful for optimizing skyrmion materials. Furthermore, we show that in theory, Lorentz TEM can identify the spin chirality of Neel-type skyrmions, although an experimental verification is challenging due to the relatively low signal-to-noise ratio.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [4];  [8];  [9];  [10];  [4];  [4];  [4]
  1. Tsinghua Univ., Beijing (China); Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States); City Univ. (CUNY), NY (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Bryn Mawr College, PA (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States); West Virginia Univ., Morgantown, WV (United States)
  6. Argonne National Lab. (ANL), Argonne, IL (United States); Oakland Univ., Rochester, MI (United States)
  7. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Delaware, Newark, DE (United States)
  8. Chinese Academy of Sciences (CAS), Beijing (China)
  9. Univ. of New Hampshire, Durham, NH (United States)
  10. Bryn Mawr College, PA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Key Research and Development Program of China; National Science Foundation of China; National Science Foundation (NSF); USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1503253
Alternate Identifier(s):
OSTI ID: 1497748
Grant/Contract Number:  
AC02-06CH11357; SC0016424
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review, B: Condensed Matter
Additional Journal Information:
Journal Volume: 99; Journal Issue: 10; Journal ID: ISSN 0163-1829
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Jiang, Wanjun, Zhang, Sheng, Wang, Xiao, Phatak, Charudatta, Wang, Qiang, Zhang, Wei, Jungfleisch, Matthias Benjamin, Pearson, John E., Liu, Yizhou, Zang, Jiadong, Cheng, Xuemei, Petford-Long, Amanda, Hoffmann, Axel, and te Velthuis, Suzanne G. E. Quantifying chiral exchange interaction for Néel-type skyrmions via Lorentz transmission electron microscopy. United States: N. p., 2019. Web. https://doi.org/10.1103/PhysRevB.99.104402.
Jiang, Wanjun, Zhang, Sheng, Wang, Xiao, Phatak, Charudatta, Wang, Qiang, Zhang, Wei, Jungfleisch, Matthias Benjamin, Pearson, John E., Liu, Yizhou, Zang, Jiadong, Cheng, Xuemei, Petford-Long, Amanda, Hoffmann, Axel, & te Velthuis, Suzanne G. E. Quantifying chiral exchange interaction for Néel-type skyrmions via Lorentz transmission electron microscopy. United States. https://doi.org/10.1103/PhysRevB.99.104402
Jiang, Wanjun, Zhang, Sheng, Wang, Xiao, Phatak, Charudatta, Wang, Qiang, Zhang, Wei, Jungfleisch, Matthias Benjamin, Pearson, John E., Liu, Yizhou, Zang, Jiadong, Cheng, Xuemei, Petford-Long, Amanda, Hoffmann, Axel, and te Velthuis, Suzanne G. E. Mon . "Quantifying chiral exchange interaction for Néel-type skyrmions via Lorentz transmission electron microscopy". United States. https://doi.org/10.1103/PhysRevB.99.104402. https://www.osti.gov/servlets/purl/1503253.
@article{osti_1503253,
title = {Quantifying chiral exchange interaction for Néel-type skyrmions via Lorentz transmission electron microscopy},
author = {Jiang, Wanjun and Zhang, Sheng and Wang, Xiao and Phatak, Charudatta and Wang, Qiang and Zhang, Wei and Jungfleisch, Matthias Benjamin and Pearson, John E. and Liu, Yizhou and Zang, Jiadong and Cheng, Xuemei and Petford-Long, Amanda and Hoffmann, Axel and te Velthuis, Suzanne G. E.},
abstractNote = {Magnetic skyrmions are topological spin textures that have been observed in bulk magnets and magnetic multilayers. For bulk magnetic materials, their noncollinear spin profiles have often been studied by using Lorentz transmission electron microscopy (TEM). We experimentally utilized Lorentz TEM imaging to study an inversion asymmetric [Pt(1.5nm)/Co(1 nm)/W(1 nm)]8 heterostructure that exhibits Neel-type skyrmions at zero field. By tracking the evolution of skyrmion diameters as a function of magnetic fields, we determined the strength of the interfacial Dzyaloshinskii-Moriya interaction (DMI). Our results suggest that in situ Lorentz TEM imaging combined with simulations can provide valuable quantitative information about the interfacial DMI strengths, which can be helpful for optimizing skyrmion materials. Furthermore, we show that in theory, Lorentz TEM can identify the spin chirality of Neel-type skyrmions, although an experimental verification is challenging due to the relatively low signal-to-noise ratio.},
doi = {10.1103/PhysRevB.99.104402},
journal = {Physical Review, B: Condensed Matter},
number = 10,
volume = 99,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spin Transfer Torques in MnSi at Ultralow Current Densities
journal, December 2010


Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum
journal, May 2012


Edge-mediated skyrmion chain and its collective dynamics in a confined geometry
journal, October 2015

  • Du, Haifeng; Che, Renchao; Kong, Lingyao
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9504

Room temperature skyrmion ground state stabilized through interlayer exchange coupling
journal, June 2015

  • Chen, Gong; Mascaraque, Arantzazu; N'Diaye, Alpha T.
  • Applied Physics Letters, Vol. 106, Issue 24
  • DOI: 10.1063/1.4922726

Skyrmions on the track
journal, March 2013

  • Fert, Albert; Cros, Vincent; Sampaio, João
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2013.29

Spin Hall Effects in Metals
journal, October 2013


Opportunities at the Frontiers of Spintronics
journal, October 2015


The design and verification of MuMax3
journal, October 2014

  • Vansteenkiste, Arne; Leliaert, Jonathan; Dvornik, Mykola
  • AIP Advances, Vol. 4, Issue 10
  • DOI: 10.1063/1.4899186

Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
journal, October 2013


Room-Temperature Creation and Spin–Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry
journal, February 2016


Interface-induced phenomena in magnetism
journal, June 2017


Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics
journal, June 2016


Surface Studies of Solids by Total Reflection of X-Rays
journal, July 1954


Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers
journal, June 2001


On the transport of intensity technique for phase retrieval
journal, December 2004


Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
journal, February 2016

  • Woo, Seonghoon; Litzius, Kai; Krüger, Benjamin
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4593

Imaging and Tailoring the Chirality of Domain Walls in Magnetic Films
journal, May 2015


Room-Temperature Skyrmion Shift Device for Memory Application
journal, December 2016


Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
journal, December 2016

  • Litzius, Kai; Lemesh, Ivan; Krüger, Benjamin
  • Nature Physics, Vol. 13, Issue 2
  • DOI: 10.1038/nphys4000

Skyrmions in magnetic multilayers
journal, August 2017


Lorentz microscopy of bubble domains and changes in domain wall state in hexaferrites
journal, November 1973


Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
journal, August 2011

  • Miron, Ioan Mihai; Garello, Kevin; Gaudin, Gilles
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10309

Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
journal, July 2017

  • Soumyanarayanan, Anjan; Raju, M.; Gonzalez Oyarce, A. L.
  • Nature Materials, Vol. 16, Issue 9
  • DOI: 10.1038/nmat4934

Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe
journal, December 2010

  • Yu, X. Z.; Kanazawa, N.; Onose, Y.
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2916

Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer
journal, December 2015

  • Benitez, M. J.; Hrabec, A.; Mihai, A. P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9957

Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy
journal, March 2017

  • Pollard, Shawn D.; Garlow, Joseph A.; Yu, Jiawei
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14761

Hybrid chiral domain walls and skyrmions in magnetic multilayers
journal, July 2018

  • Legrand, William; Chauleau, Jean-Yves; Maccariello, Davide
  • Science Advances, Vol. 4, Issue 7
  • DOI: 10.1126/sciadv.aat0415

Topological properties and dynamics of magnetic skyrmions
journal, December 2013


Engineering skyrmions in transition-metal multilayers for spintronics
journal, June 2016

  • Dupé, B.; Bihlmayer, G.; Böttcher, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11779

Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110)
journal, October 2008


Blowing magnetic skyrmion bubbles
journal, June 2015


Real-space observation of a two-dimensional skyrmion crystal
journal, June 2010


Biskyrmion states and their current-driven motion in a layered manganite
journal, January 2014

  • Yu, X. Z.; Tokunaga, Y.; Kaneko, Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4198

Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni 2 MnGa
journal, June 2016


Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires
journal, July 2017

  • Jaiswal, S.; Litzius, K.; Lemesh, I.
  • Applied Physics Letters, Vol. 111, Issue 2
  • DOI: 10.1063/1.4991360

Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy
journal, November 2015

  • Rajeswari, Jayaraman; Huang, Ping; Mancini, Giulia Fulvia
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 46
  • DOI: 10.1073/pnas.1513343112

Chiral magnetic order at surfaces driven by inversion asymmetry
journal, May 2007


Novel Chiral Magnetic Domain Wall Structure in Fe / Ni / Cu ( 001 ) Films
journal, April 2013


Current-driven dynamics of chiral ferromagnetic domain walls
journal, June 2013

  • Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min
  • Nature Materials, Vol. 12, Issue 7
  • DOI: 10.1038/nmat3675

Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8
journal, September 2015

  • Kézsmárki, I.; Bordács, S.; Milde, P.
  • Nature Materials, Vol. 14, Issue 11
  • DOI: 10.1038/nmat4402

Magnetic stripes and skyrmions with helicity reversals
journal, May 2012

  • Yu, X.; Mostovoy, M.; Tokunaga, Y.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 23
  • DOI: 10.1073/pnas.1118496109

Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
journal, January 2016

  • Boulle, Olivier; Vogel, Jan; Yang, Hongxin
  • Nature Nanotechnology, Vol. 11, Issue 5
  • DOI: 10.1038/nnano.2015.315

Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
journal, January 2016

  • Moreau-Luchaire, C.; Moutafis, C.; Reyren, N.
  • Nature Nanotechnology, Vol. 11, Issue 5
  • DOI: 10.1038/nnano.2015.313

GenX : an extensible X-ray reflectivity refinement program utilizing differential evolution
journal, November 2007


Anatomy of Dzyaloshinskii-Moriya Interaction at Co / Pt Interfaces
journal, December 2015


Skyrmion Lattice in a Chiral Magnet
journal, February 2009


A strategy for the design of skyrmion racetrack memories
journal, October 2014

  • Tomasello, R.; Martinez, E.; Zivieri, R.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06784

Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films
journal, December 2012


Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks
journal, April 2016

  • Zhao, Xuebing; Jin, Chiming; Wang, Chao
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 18
  • DOI: 10.1073/pnas.1600197113

Observation of the Magnetic Skyrmion Lattice in a MnSi Nanowire by Lorentz TEM
journal, July 2013

  • Yu, Xiuzhen; DeGrave, John P.; Hara, Yuka
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl401687d

Mobile Néel skyrmions at room temperature: status and future
journal, May 2016

  • Jiang, Wanjun; Zhang, Wei; Yu, Guoqiang
  • AIP Advances, Vol. 6, Issue 5
  • DOI: 10.1063/1.4943757

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers
journal, September 2016

  • Yu, Jiawei; Qiu, Xuepeng; Wu, Yang
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep32629

Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions
journal, July 2011

  • Heinze, Stefan; von Bergmann, Kirsten; Menzel, Matthias
  • Nature Physics, Vol. 7, Issue 9
  • DOI: 10.1038/nphys2045

Spontaneous skyrmion ground states in magnetic metals
journal, August 2006

  • Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C.
  • Nature, Vol. 442, Issue 7104, p. 797-801
  • DOI: 10.1038/nature05056

Magnetic antiskyrmions above room temperature in tetragonal Heusler materials
journal, August 2017

  • Nayak, Ajaya K.; Kumar, Vivek; Ma, Tianping
  • Nature, Vol. 548, Issue 7669
  • DOI: 10.1038/nature23466

Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films
journal, July 2014


Magnetic skyrmions: advances in physics and potential applications
journal, June 2017


Realization of zero-field skyrmions with high-density via electromagnetic manipulation in Pt/Co/Ta multilayers
journal, November 2017

  • He, Min; Peng, Licong; Zhu, Zhaozhao
  • Applied Physics Letters, Vol. 111, Issue 20
  • DOI: 10.1063/1.5001322

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
journal, September 2012

  • Pai, Chi-Feng; Liu, Luqiao; Li, Y.
  • Applied Physics Letters, Vol. 101, Issue 12
  • DOI: 10.1063/1.4753947

Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces
journal, November 2016

  • Soumyanarayanan, Anjan; Reyren, Nicolas; Fert, Albert
  • Nature, Vol. 539, Issue 7630
  • DOI: 10.1038/nature19820

Observation of Skyrmions in a Multiferroic Material
journal, April 2012


Creation of artificial skyrmions and antiskyrmions by anisotropy engineering
journal, August 2016

  • Zhang, S.; Petford-Long, A. K.; Phatak, C.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep31248

Electron-optical phase shift of magnetic nanoparticles I. Basic concepts
journal, January 2003


Emergent electrodynamics of skyrmions in a chiral magnet
journal, February 2012

  • Schulz, T.; Ritz, R.; Bauer, A.
  • Nature Physics, Vol. 8, Issue 4
  • DOI: 10.1038/nphys2231

Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons
journal, February 2012


Direct observation of the skyrmion Hall effect
journal, September 2016

  • Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang
  • Nature Physics, Vol. 13, Issue 2
  • DOI: 10.1038/nphys3883