skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

Publication Date:
Research Org.:
Purdue Univ., West Lafayette, IN (United States)
Sponsoring Org.:
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1323141
Grant/Contract Number:  
Resource Type:
Published Article
Journal Name:
Nanoscale Research Letters
Additional Journal Information:
Journal Name: Nanoscale Research Letters Journal Volume: 10 Journal Issue: 1; Journal ID: ISSN 1931-7573
Springer Science + Business Media
Country of Publication:
United States
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; low-dimension semiconductor; electron transport; current drive capability; carbon nanotube transistors; field-effect transistors; finfet; devices; simulation; design; nm

Citation Formats

Zhu, Y., and Appenzeller, J. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D. United States: N. p., 2015. Web. doi:10.1186/s11671-015-1134-6.
Zhu, Y., & Appenzeller, J. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D. United States. doi:10.1186/s11671-015-1134-6.
Zhu, Y., and Appenzeller, J. Thu . "On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D". United States. doi:10.1186/s11671-015-1134-6.
title = {On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D},
author = {Zhu, Y. and Appenzeller, J.},
abstractNote = {},
doi = {10.1186/s11671-015-1134-6},
journal = {Nanoscale Research Letters},
number = 1,
volume = 10,
place = {United States},
year = {2015},
month = {10}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1186/s11671-015-1134-6

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Model system (top left), impact of VDS and VGS on the 1D mode system (top right), and visualization of parallel conduction in an array of 1D wires (bottom)

Save / Share:

Works referenced in this record:

Device scaling limits of Si MOSFETs and their application dependencies
journal, March 2001

  • Frank, D. J.; Dennard, R. H.; Nowak, E.
  • Proceedings of the IEEE, Vol. 89, Issue 3
  • DOI: 10.1109/5.915374

Electronic states of graphene nanoribbons studied with the Dirac equation
journal, June 2006

High-Mobility Graphene Nanoribbons Prepared Using Polystyrene Dip-Pen Nanolithography
journal, April 2011

  • Shin, Yun-Sok; Son, Jong Yeog; Jo, Moon-Ho
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja108464s

Extension and source/drain design for high-performance finFET devices
journal, April 2003

Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current−Voltage Measurements
journal, March 2011

  • Meric, Inanc; Dean, Cory R.; Young, Andrea F.
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl103993z

Quantum capacitance devices
journal, February 1988

  • Luryi, Serge
  • Applied Physics Letters, Vol. 52, Issue 6
  • DOI: 10.1063/1.99649

Exceptional ballistic transport in epitaxial graphene nanoribbons
journal, February 2014

  • Baringhaus, Jens; Ruan, Ming; Edler, Frederik
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature12952

Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET
journal, June 2008

  • Lansbergen, G. P.; Rahman, R.; Wellard, C. J.
  • Nature Physics, Vol. 4, Issue 8
  • DOI: 10.1038/nphys994

Conductance quantization and zero bias peak in a gated quantum wire
journal, March 2005

  • Giannetta, R. W.; Olheiser, T. A.; Hannan, M.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 27, Issue 1-2
  • DOI: 10.1016/j.physe.2004.12.001

Simulation Study of the Scaling Behavior of Top-Gated Carbon Nanotube Field Effect Transistors
journal, October 2008

  • Shin, Mincheol; Lee, Jaehyun; Ahn, Chiyui
  • Journal of Nanoscience and Nanotechnology, Vol. 8, Issue 10
  • DOI: 10.1166/jnn.2008.1437

Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation
conference, January 2002

  • Kedzierski, J.; Nowak, E.; Kanarsky, T.
  • IEEE International Electron Devices Meeting, Digest. International Electron Devices Meeting,
  • DOI: 10.1109/IEDM.2002.1175824

Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices
conference, December 2008

A Numerical Study of Scaling Issues for Schottky-Barrier Carbon Nanotube Transistors
journal, February 2004

  • Guo, J.; Datta, S.; Lundstrom, M.
  • IEEE Transactions on Electron Devices, Vol. 51, Issue 2
  • DOI: 10.1109/TED.2003.821883

Sub-50 nm P-channel FinFET
journal, May 2001

  • Xuejue Huang, ; Kuo, C.
  • IEEE Transactions on Electron Devices, Vol. 48, Issue 5
  • DOI: 10.1109/16.918235

FinFET-a self-aligned double-gate MOSFET scalable to 20 nm
journal, January 2000

  • Chenming Hu, ; Bokor, J.
  • IEEE Transactions on Electron Devices, Vol. 47, Issue 12
  • DOI: 10.1109/16.887014

FinFET design considerations based on 3-D simulation and analytical modeling
journal, August 2002

  • Pei, G.; Kedzierski, J.; Oldiges, P.
  • IEEE Transactions on Electron Devices, Vol. 49, Issue 8
  • DOI: 10.1109/TED.2002.801263

Ballistic carbon nanotube field-effect transistors
journal, August 2003

  • Javey, Ali; Guo, Jing; Wang, Qian
  • Nature, Vol. 424, Issue 6949, p. 654-657
  • DOI: 10.1038/nature01797

Length scaling of carbon nanotube transistors
journal, November 2010

Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
journal, November 2008

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.