DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando x-ray Raman spectroscopy

Abstract

This study probes the electrochemical intercalation mechanism of Li into graphitic carbon using x-ray Raman spectroscopy (XRS), an inelastic x-ray scattering technique. Operando and high resolution spectra of electrochemically lithiated composite graphitic electrodes at discrete states of Li uptake (stages III, II and I) show gradually changing spectral features with Li intercalation, the end state agreeing well with chemically fully lithiated LiC6 highly oriented pyrolytic graphite (HOPG). The two most dominant changes in the XRS spectrum of the C-K edge are the reduced intensity of the $$\pi$$* peak and shift the onset of the σ* states to lower energies upon full lithiation. The excellent instrumental energy resolution uncovered novel spectral features and, thus, electronic changes with varying lithium content. Thus, the general spectral changes with progressing Li intercalation agree well with our accompanying DFT calculations.

Authors:
 [1];  [2];  [2];  [2];  [3];  [4];  [4];  [5]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); European X-Ray Free-Electron Laser Facility, Schenefeld (Germany)
  2. SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
  3. European X-Ray Free-Electron Laser Facility, Schenefeld (Germany)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Illinois, Chicago, IL (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1502989
Alternate Identifier(s):
OSTI ID: 1635847
Grant/Contract Number:  
AC02-76SF00515; SC0001294
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 143; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Boesenberg, Ulrike, Sokaras, Dimosthenis, Nordlund, Dennis, Weng, Tsu-Chien, Gorelov, Evgeny, Richardson, Thomas J., Kostecki, Robert, and Cabana, Jordi. Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando x-ray Raman spectroscopy. United States: N. p., 2018. Web. doi:10.1016/j.carbon.2018.11.031.
Boesenberg, Ulrike, Sokaras, Dimosthenis, Nordlund, Dennis, Weng, Tsu-Chien, Gorelov, Evgeny, Richardson, Thomas J., Kostecki, Robert, & Cabana, Jordi. Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando x-ray Raman spectroscopy. United States. https://doi.org/10.1016/j.carbon.2018.11.031
Boesenberg, Ulrike, Sokaras, Dimosthenis, Nordlund, Dennis, Weng, Tsu-Chien, Gorelov, Evgeny, Richardson, Thomas J., Kostecki, Robert, and Cabana, Jordi. Tue . "Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando x-ray Raman spectroscopy". United States. https://doi.org/10.1016/j.carbon.2018.11.031. https://www.osti.gov/servlets/purl/1502989.
@article{osti_1502989,
title = {Electronic structure changes upon lithium intercalation into graphite – Insights from ex situ and operando x-ray Raman spectroscopy},
author = {Boesenberg, Ulrike and Sokaras, Dimosthenis and Nordlund, Dennis and Weng, Tsu-Chien and Gorelov, Evgeny and Richardson, Thomas J. and Kostecki, Robert and Cabana, Jordi},
abstractNote = {This study probes the electrochemical intercalation mechanism of Li into graphitic carbon using x-ray Raman spectroscopy (XRS), an inelastic x-ray scattering technique. Operando and high resolution spectra of electrochemically lithiated composite graphitic electrodes at discrete states of Li uptake (stages III, II and I) show gradually changing spectral features with Li intercalation, the end state agreeing well with chemically fully lithiated LiC6 highly oriented pyrolytic graphite (HOPG). The two most dominant changes in the XRS spectrum of the C-K edge are the reduced intensity of the $\pi$* peak and shift the onset of the σ* states to lower energies upon full lithiation. The excellent instrumental energy resolution uncovered novel spectral features and, thus, electronic changes with varying lithium content. Thus, the general spectral changes with progressing Li intercalation agree well with our accompanying DFT calculations.},
doi = {10.1016/j.carbon.2018.11.031},
journal = {Carbon},
number = C,
volume = 143,
place = {United States},
year = {Tue Nov 13 00:00:00 EST 2018},
month = {Tue Nov 13 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Intercalation compounds of graphite
journal, January 2002


Insertion Electrode Materials for Rechargeable Lithium Batteries
journal, July 1998


Tetrakohlenstoffmonofluorid, eine neue Graphit-Fluor-Verbindung
journal, September 1947


Theoretical study of lithium graphite. I. Band structure, density of states, and Fermi-surface properties
journal, November 1978


Theoretical study of lithium graphite. II. Spatial distribution of valence electrons
journal, November 1978


Lithium-intercalated graphite: Self-consistent electronic structure for stages one, two, and three
journal, July 1983

  • Holzwarth, N. A. W.; Louie, Steven G.; Rabii, Sohrab
  • Physical Review B, Vol. 28, Issue 2
  • DOI: 10.1103/PhysRevB.28.1013

Density-functional theory calculations of the electron energy-loss near-edge structure of Li-intercalated graphite
journal, August 2009


Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations
journal, September 2010


Intercalation of lithium into graphite and other carbons
journal, August 1975


Valence and core electronic excitations in Li C 6
journal, December 1983


Interlayer states of LiC6 investigated by inelastic X-ray scattering spectroscopy (IXSS) using Li-core excitation
journal, August 1991


Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
journal, January 2011

  • Wang, Feng; Graetz, Jason; Moreno, M. Sergio
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn1028168

Fine structure and chemical shifts in nonresonant inelastic x-ray scattering from Li-intercalated graphite
journal, July 2007

  • Balasubramanian, M.; Johnson, C. S.; Cross, J. O.
  • Applied Physics Letters, Vol. 91, Issue 3
  • DOI: 10.1063/1.2752755

Lithium Diffusion in Graphitic Carbon
journal, March 2010

  • Persson, Kristin; Sethuraman, Vijay A.; Hardwick, Laurence J.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 8
  • DOI: 10.1021/jz100188d

Intercalation stage dependence of core electronic excitations in Li-intercalated graphite from inelastic X-ray scattering
journal, June 2017

  • Stutz, G. E.; Otero, M.; Ceppi, S. A.
  • Applied Physics Letters, Vol. 110, Issue 25
  • DOI: 10.1063/1.4986922

Electron energy-loss spectrometry on lithiated graphite
journal, July 2000

  • Hightower, A.; Ahn, C. C.; Fultz, B.
  • Applied Physics Letters, Vol. 77, Issue 2
  • DOI: 10.1063/1.126936

X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
journal, July 1993

  • Henke, B. L.; Gullikson, E. M.; Davis, J. C.
  • Atomic Data and Nuclear Data Tables, Vol. 54, Issue 2, p. 181-342
  • DOI: 10.1006/adnd.1993.1013

Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy
journal, January 2004

  • Augustsson, A.; Herstedt, M.; Guo, J. -H.
  • Phys. Chem. Chem. Phys., Vol. 6, Issue 16
  • DOI: 10.1039/B313434B

Revealing the electronic structure of LiC 6 by soft X-ray spectroscopy
journal, March 2017

  • Zhang, L.; Li, X.; Augustsson, A.
  • Applied Physics Letters, Vol. 110, Issue 10
  • DOI: 10.1063/1.4978432

Hard X-rays in–soft X-rays out: An operando piggyback view deep into a charging lithium ion battery with X-ray Raman spectroscopy
journal, April 2015

  • Braun, Artur; Nordlund, Dennis; Song, Seung-Wan
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 200
  • DOI: 10.1016/j.elspec.2015.03.005

Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes
journal, February 2003


A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource
journal, April 2012

  • Sokaras, D.; Nordlund, D.; Weng, T. -C.
  • Review of Scientific Instruments, Vol. 83, Issue 4
  • DOI: 10.1063/1.4704458

Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic x-ray scattering
journal, June 2006

  • Fister, T. T.; Seidler, G. T.; Wharton, L.
  • Review of Scientific Instruments, Vol. 77, Issue 6
  • DOI: 10.1063/1.2204581

Iron speciation in minerals and glasses probed by $$\hbox{M}_{2/3}$$ M 2 / 3 -edge X-ray Raman scattering spectroscopy
journal, May 2014

  • Nyrow, A.; Sternemann, C.; Wilke, M.
  • Contributions to Mineralogy and Petrology, Vol. 167, Issue 5
  • DOI: 10.1007/s00410-014-1012-8

Multiple-element spectrometer for non-resonant inelastic X-ray spectroscopy of electronic excitations
journal, June 2009

  • Verbeni, Roberto; Pylkkänen, Tuomas; Huotari, Simo
  • Journal of Synchrotron Radiation, Vol. 16, Issue 4
  • DOI: 10.1107/S090904950901886X

Bulk-Sensitive Characterization of the Discharged Products in Li–O 2 Batteries by Nonresonant Inelastic X-ray Scattering
journal, August 2012

  • Karan, Naba K.; Balasubramanian, Mahalingam; Fister, Timothy T.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 34
  • DOI: 10.1021/jp306298e

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites
journal, January 2012

  • Ridgway, Paul; Zheng, Honghe; Bello, A. F.
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.006205jes

Structure of graphite by neutron diffraction
journal, November 1975


Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction
journal, June 2014


Momentum-Transfer Dependence of the Near Edge Structure of Li
journal, October 1997

  • Nagasawa, Hisao; Mourikis, Spiridon; Schülke, Winfried
  • Journal of the Physical Society of Japan, Vol. 66, Issue 10
  • DOI: 10.1143/JPSJ.66.3139

Evidence for Interlayer Band Shifts upon Lithium Intercalation in Graphite from Inelastic X-Ray Scattering
journal, May 1988


Lithium Storage in Carbon Nanostructures
journal, July 2009


Phase diagram of Li x C 6
journal, November 1991


Phase formation and microstructure in lithium-carbon intercalation compounds during lithium uptake and release
journal, June 2017


X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell
journal, February 2018

  • Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel
  • Journal of Synchrotron Radiation, Vol. 25, Issue 2
  • DOI: 10.1107/S1600577518001662

Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Carbon K-edge XANES spectromicroscopy of natural graphite
journal, September 2008


Energy-loss near-edge structure changes with bond length in carbon systems
journal, November 2005


Electronic structure of lithium graphite
journal, March 1980


Electronic and magnetic properties of the graphene–ferromagnet interface
journal, December 2010


Works referencing / citing this record:

In situ X-ray Raman spectroscopy and magnetic susceptibility study on the Li[Li 0.15 Mn 1.85 ]O 4 oxygen anion redox reaction
journal, January 2020

  • Mukai, Kazuhiko; Nonaka, Takamasa; Uyama, Takeshi
  • Chemical Communications, Vol. 56, Issue 11
  • DOI: 10.1039/c9cc09051g