skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers

Abstract

Here, we propose a strategy to potentially best enhance interfacial thermal transport through solid–solid interfaces by adding nano-engineered, exponentially mass-graded intermediate layers. This exponential design rule results in a greater enhancement than a linearly mass-graded interface. By combining calculations using non-equilibrium Green's functions (NEGF) and non-equilibrium molecular dynamics (NEMD), we investigated the role of impedance matching and anharmonicity in the enhancement in addition to geometric parameters such as the number of layers and the junction thickness. Our analysis shows that the effect on thermal conductance is dominated by the phonon thermalization through anharmonic effects, while elastic phonon transmission and impedance matching play a secondary role. In the harmonic limit, increasing the number of layers results in greater elastic phonon transmission at each individual boundary, countered by the decrease of available conducting channels. Consequently, conductance initially increases with number of layers due to improved bridging, but quickly saturates. The presence of slight anharmonic effects (at very low temperature, T = 2 K) turns the saturation into a monotonically increasing trend. Anharmonic effects can further facilitate interfacial thermal transport through the thermalization of phonons at moderate temperatures. At high temperature, however, the role of anharmonicity as a facilitator of interfacial thermal transportmore » reverses. Strong anharmonicity introduces significant intrinsic resistance, overruling the enhancement in thermal conduction at the boundaries. It follows that at a particular temperature, there exists a corresponding junction thickness at which thermal conductance is maximized.« less

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [1]; ORCiD logo [1]
  1. Univ. of Virginia, Charlottesville, VA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. U.S. Naval Research Lab. (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1502588
Alternate Identifier(s):
OSTI ID: 1501687
Grant/Contract Number:  
AC05-00OR22725; Graduate opportunity (GO!) program
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 11; Journal Issue: 13; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Rastgarkafshgarkolaei, Rouzbeh, Zhang, Jingjie, Polanco, Carlos A., Le, Nam Q., Ghosh, Avik W., and Norris, Pamela M. Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers. United States: N. p., 2019. Web. doi:10.1039/C8NR09188A.
Rastgarkafshgarkolaei, Rouzbeh, Zhang, Jingjie, Polanco, Carlos A., Le, Nam Q., Ghosh, Avik W., & Norris, Pamela M. Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers. United States. doi:10.1039/C8NR09188A.
Rastgarkafshgarkolaei, Rouzbeh, Zhang, Jingjie, Polanco, Carlos A., Le, Nam Q., Ghosh, Avik W., and Norris, Pamela M. Wed . "Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers". United States. doi:10.1039/C8NR09188A. https://www.osti.gov/servlets/purl/1502588.
@article{osti_1502588,
title = {Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers},
author = {Rastgarkafshgarkolaei, Rouzbeh and Zhang, Jingjie and Polanco, Carlos A. and Le, Nam Q. and Ghosh, Avik W. and Norris, Pamela M.},
abstractNote = {Here, we propose a strategy to potentially best enhance interfacial thermal transport through solid–solid interfaces by adding nano-engineered, exponentially mass-graded intermediate layers. This exponential design rule results in a greater enhancement than a linearly mass-graded interface. By combining calculations using non-equilibrium Green's functions (NEGF) and non-equilibrium molecular dynamics (NEMD), we investigated the role of impedance matching and anharmonicity in the enhancement in addition to geometric parameters such as the number of layers and the junction thickness. Our analysis shows that the effect on thermal conductance is dominated by the phonon thermalization through anharmonic effects, while elastic phonon transmission and impedance matching play a secondary role. In the harmonic limit, increasing the number of layers results in greater elastic phonon transmission at each individual boundary, countered by the decrease of available conducting channels. Consequently, conductance initially increases with number of layers due to improved bridging, but quickly saturates. The presence of slight anharmonic effects (at very low temperature, T = 2 K) turns the saturation into a monotonically increasing trend. Anharmonic effects can further facilitate interfacial thermal transport through the thermalization of phonons at moderate temperatures. At high temperature, however, the role of anharmonicity as a facilitator of interfacial thermal transport reverses. Strong anharmonicity introduces significant intrinsic resistance, overruling the enhancement in thermal conduction at the boundaries. It follows that at a particular temperature, there exists a corresponding junction thickness at which thermal conductance is maximized.},
doi = {10.1039/C8NR09188A},
journal = {Nanoscale},
number = 13,
volume = 11,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Anti-reflective coatings: A critical, in-depth review
journal, January 2011

  • Raut, Hemant Kumar; Ganesh, V. Anand; Nair, A. Sreekumaran
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01297e

Thermal Boundary Conductance: A Materials Science Perspective
journal, July 2016


Enhancement of Thermal Conductance at Metal-Dielectric Interfaces Using Subnanometer Metal Adhesion Layers
journal, January 2016


Optimizing the Interfacial Thermal Conductance at Gold–Alkane Junctions From “First Principles”
journal, May 2018

  • Zhang, Jingjie; Polanco, Carlos A.; Ghosh, Avik W.
  • Journal of Heat Transfer, Vol. 140, Issue 9
  • DOI: 10.1115/1.4040144

Recent progress in metal-organic chemical vapor deposition of $\left( 000\bar{1} \right)$ N-polar group-III nitrides
journal, August 2014


Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs
journal, July 2017

  • Zhou, Yan; Ramaneti, Rajesh; Anaya, Julian
  • Applied Physics Letters, Vol. 111, Issue 4
  • DOI: 10.1063/1.4995407

Thermal conductance and phonon transmissivity of metal–graphite interfaces
journal, May 2010

  • Schmidt, Aaron J.; Collins, Kimberlee C.; Minnich, Austin J.
  • Journal of Applied Physics, Vol. 107, Issue 10
  • DOI: 10.1063/1.3428464

Quantum thermal transport in nanostructures
journal, April 2008


Energy dissipation and transport in nanoscale devices
journal, March 2010


Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers
journal, May 2016

  • Sun, Huarui; Pomeroy, James W.; Simon, Roland B.
  • IEEE Electron Device Letters, Vol. 37, Issue 5
  • DOI: 10.1109/LED.2016.2537835

A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms
journal, May 2016

  • Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M.
  • Journal of Applied Physics, Vol. 119, Issue 20
  • DOI: 10.1063/1.4952411

Tuning the interfacial thermal conductance via the anisotropic elastic properties of graphite
journal, April 2019


Role of crystal structure and junction morphology on interface thermal conductance
journal, October 2015

  • Polanco, Carlos A.; Rastgarkafshgarkolaei, Rouzbeh; Zhang, Jingjie
  • Physical Review B, Vol. 92, Issue 14
  • DOI: 10.1103/PhysRevB.92.144302

Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface
journal, January 2016

  • Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming
  • Nanoscale, Vol. 8, Issue 4
  • DOI: 10.1039/C5NR06855J

Impedance Matching of Atomic Thermal Interfaces Using Primitive Block Decomposition
journal, August 2013

  • Polanco, Carlos A.; Saltonstall, Christopher B.; Norris, Pamela M.
  • Nanoscale and Microscale Thermophysical Engineering, Vol. 17, Issue 3
  • DOI: 10.1080/15567265.2013.787572

Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces
journal, January 2012


Effects of bulk and interfacial anharmonicity on thermal conductance at solid/solid interfaces
journal, June 2017

  • Le, Nam Q.; Polanco, Carlos A.; Rastgarkafshgarkolaei, Rouzbeh
  • Physical Review B, Vol. 95, Issue 24
  • DOI: 10.1103/PhysRevB.95.245417

Thermal conductance of metal–diamond interfaces at high pressure
journal, March 2015

  • Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7578

Effect of interface adhesion and impurity mass on phonon transport at atomic junctions
journal, January 2013

  • Saltonstall, Christopher B.; Polanco, Carlos A.; Duda, John C.
  • Journal of Applied Physics, Vol. 113, Issue 1
  • DOI: 10.1063/1.4773331

Diamond family of colloidal supercrystals as phononic metamaterials
journal, May 2018

  • Aryana, Kiumars; Zanjani, Mehdi B.
  • Journal of Applied Physics, Vol. 123, Issue 18
  • DOI: 10.1063/1.5020975

Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces
journal, October 2014


Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces
journal, December 2016

  • Lee, Eungkyu; Zhang, Teng; Yoo, Taehee
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 51
  • DOI: 10.1021/acsami.6b12947

Effects of chemical bonding on heat transport across interfaces
journal, April 2012

  • Losego, Mark D.; Grady, Martha E.; Sottos, Nancy R.
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3303

Enhancing phonon flow through one-dimensional interfaces by impedance matching
journal, August 2014

  • Polanco, Carlos A.; Ghosh, Avik W.
  • Journal of Applied Physics, Vol. 116, Issue 8
  • DOI: 10.1063/1.4893789

Design rules for interfacial thermal conductance: Building better bridges
journal, May 2017

  • Polanco, Carlos A.; Rastgarkafshgarkolaei, Rouzbeh; Zhang, Jingjie
  • Physical Review B, Vol. 95, Issue 19
  • DOI: 10.1103/PhysRevB.95.195303

Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers
journal, February 2009

  • Riedel, G. J.; Pomeroy, J. W.; Hilton, K. P.
  • IEEE Electron Device Letters, Vol. 30, Issue 2
  • DOI: 10.1109/LED.2008.2010340

Reduction of Lens Reflexion by the “Moth Eye” Principle
journal, August 1973

  • Clapham, P. B.; Hutley, M. C.
  • Nature, Vol. 244, Issue 5414
  • DOI: 10.1038/244281a0

Thermal conductivity of bulk and thin-film silicon: A Landauer approach
journal, May 2012

  • Jeong, Changwook; Datta, Supriyo; Lundstrom, Mark
  • Journal of Applied Physics, Vol. 111, Issue 9
  • DOI: 10.1063/1.4710993

Phonon conduction in GaN-diamond composite substrates
journal, February 2017

  • Cho, Jungwan; Francis, Daniel; Altman, David H.
  • Journal of Applied Physics, Vol. 121, Issue 5
  • DOI: 10.1063/1.4975468

Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method
journal, December 2012


Role of Molecular Polarity in Thermal Transport of Boron Nitride–Organic Molecule Composites
journal, October 2018


Thermal boundary conductance across rough interfaces probed by molecular dynamics
journal, February 2014


Mobility enhancement in double δ‐doped GaAs/In x Ga 1− x As/GaAs pseudomorphic structures by grading the heterointerfaces
journal, May 1994

  • Wu, C. L.; Hsu, W. C.; Shieh, H. M.
  • Applied Physics Letters, Vol. 64, Issue 22
  • DOI: 10.1063/1.111392

Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach
journal, December 2003


Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping
journal, February 2014

  • Pomeroy, J. W.; Bernardoni, M.; Dumka, D. C.
  • Applied Physics Letters, Vol. 104, Issue 8
  • DOI: 10.1063/1.4865583

Influence of interfacial properties on thermal transport at gold:silicon contacts
journal, February 2013

  • Duda, J. C.; Yang, C. -Y. P.; Foley, B. M.
  • Applied Physics Letters, Vol. 102, Issue 8
  • DOI: 10.1063/1.4793431

Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305