DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?

Abstract

There is a commercial demand for single-walled carbon nanotubes (SWCNTs) with uniform diameters and (n, m) chiralities. Yet, controlling these structural parameters in practice remains a challenge. Recent studies have shown that acetonitrile reversibly modulates SWCNT diameter during chemical vapour deposition (CVD) growth. Here we propose a mechanism to explain this phenomenon using non-equilibrium quantum chemical molecular dynamics simulations. We reveal that acetonitrile-derived radicals actively abstract hydrogen from surface hydrocarbon species as the SWCNT nucleates. This forms hydrogen (iso)-cyanide as a principal chemical product, and decreases the overall surface carbon density during nucleation. By liberating hydrogen, the number of dangling bonds present at the interface of the nucleating carbon structure is increased, which in turn accelerates SWCNT nucleation kinetics. Critically, the number of pentagon rings formed in the SWCNT precursor cap structure increases. Because the nucleation kinetics are much faster than the kinetics of ring defect healing, the pentagons become ‘trapped’ in the growing SWCNT cap structure, and this leads to more highly-curved SWCNT caps. As a result, these more highly-curved caps, combined with the lower surface carbon density and the faster kinetics of nucleation and growth, will ultimately yield narrower-diameter SWCNTs in the presence of acetonitrile.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ.of Newcastle, Callaghan, NSW (Australia)
  2. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1502576
Alternate Identifier(s):
OSTI ID: 1547753
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 146; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Eveleens, Clothilde A., Irle, Stephan, and Page, Alister J. How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?. United States: N. p., 2019. Web. doi:10.1016/j.carbon.2019.02.027.
Eveleens, Clothilde A., Irle, Stephan, & Page, Alister J. How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?. United States. https://doi.org/10.1016/j.carbon.2019.02.027
Eveleens, Clothilde A., Irle, Stephan, and Page, Alister J. Wed . "How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?". United States. https://doi.org/10.1016/j.carbon.2019.02.027. https://www.osti.gov/servlets/purl/1502576.
@article{osti_1502576,
title = {How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth?},
author = {Eveleens, Clothilde A. and Irle, Stephan and Page, Alister J.},
abstractNote = {There is a commercial demand for single-walled carbon nanotubes (SWCNTs) with uniform diameters and (n, m) chiralities. Yet, controlling these structural parameters in practice remains a challenge. Recent studies have shown that acetonitrile reversibly modulates SWCNT diameter during chemical vapour deposition (CVD) growth. Here we propose a mechanism to explain this phenomenon using non-equilibrium quantum chemical molecular dynamics simulations. We reveal that acetonitrile-derived radicals actively abstract hydrogen from surface hydrocarbon species as the SWCNT nucleates. This forms hydrogen (iso)-cyanide as a principal chemical product, and decreases the overall surface carbon density during nucleation. By liberating hydrogen, the number of dangling bonds present at the interface of the nucleating carbon structure is increased, which in turn accelerates SWCNT nucleation kinetics. Critically, the number of pentagon rings formed in the SWCNT precursor cap structure increases. Because the nucleation kinetics are much faster than the kinetics of ring defect healing, the pentagons become ‘trapped’ in the growing SWCNT cap structure, and this leads to more highly-curved SWCNT caps. As a result, these more highly-curved caps, combined with the lower surface carbon density and the faster kinetics of nucleation and growth, will ultimately yield narrower-diameter SWCNTs in the presence of acetonitrile.},
doi = {10.1016/j.carbon.2019.02.027},
journal = {Carbon},
number = C,
volume = 146,
place = {United States},
year = {Wed Feb 13 00:00:00 EST 2019},
month = {Wed Feb 13 00:00:00 EST 2019}
}

Journal Article:

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Helical microtubules of graphitic carbon
journal, November 1991


Transparent, Conductive Carbon Nanotube Films
journal, August 2004


Carbon Nanotube Interconnects Realized through Functionalization and Sintered Silver Attachment
journal, February 2016

  • Gopee, V.; Thomas, O.; Hunt, C.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 8
  • DOI: 10.1021/acsami.5b12057

Flexible high-performance carbon nanotube integrated circuits
journal, February 2011

  • Sun, Dong-ming; Timmermans, Marina Y.; Tian, Ying
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 156-161
  • DOI: 10.1038/nnano.2011.1

Catalytic CVD synthesis of boron nitride and carbon nanomaterials – synergies between experiment and theory
journal, January 2017

  • McLean, Ben; Eveleens, Clothilde A.; Mitchell, Izaac
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 39
  • DOI: 10.1039/C7CP03835F

Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts
journal, June 2014


Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co–W bimetallic catalyst
journal, January 2016

  • An, Hua; Kumamoto, Akihito; Takezaki, Hiroki
  • Nanoscale, Vol. 8, Issue 30
  • DOI: 10.1039/C6NR02749K

Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts
journal, July 2015

  • Yang, Feng; Wang, Xiao; Zhang, Daqi
  • Journal of the American Chemical Society, Vol. 137, Issue 27
  • DOI: 10.1021/jacs.5b04403

Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes
journal, November 2016


Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts
journal, February 2017

  • Zhang, Shuchen; Kang, Lixing; Wang, Xiao
  • Nature, Vol. 543, Issue 7644
  • DOI: 10.1038/nature21051

Re-growth of single-walled carbon nanotube by hot-wall and cold-wall chemical vapor deposition
journal, December 2015


Initiation of carbon nanotube growth by well-defined carbon nanorings
journal, May 2013

  • Omachi, Haruka; Nakayama, Takuya; Takahashi, Eri
  • Nature Chemistry, Vol. 5, Issue 7
  • DOI: 10.1038/nchem.1655

Single-walled Carbon Nanotube Growth from Chiral Carbon Nanorings: Prediction of Chirality and Diameter Influence on Growth Rates
journal, September 2012

  • Li, Hai-Bei; Page, Alister J.; Irle, Stephan
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja305769v

Progress towards monodisperse single-walled carbon nanotubes
journal, May 2008


Sorting carbon nanotubes by electronic structure using density differentiation
journal, October 2006

  • Arnold, Michael S.; Green, Alexander A.; Hulvat, James F.
  • Nature Nanotechnology, Vol. 1, Issue 1, p. 60-65
  • DOI: 10.1038/nnano.2006.52

Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation
journal, May 2010

  • Ghosh, Saunab; Bachilo, Sergei M.; Weisman, R. Bruce
  • Nature Nanotechnology, Vol. 5, Issue 6
  • DOI: 10.1038/nnano.2010.68

Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography
journal, May 2011

  • Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi
  • Nature Communications, Vol. 2, Article No. 309
  • DOI: 10.1038/ncomms1313

Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging
journal, June 2016

  • Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12056

Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets
journal, January 2009

  • Amama, Placidus B.; Pint, Cary L.; McJilton, Laura
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl801876h

Acetylene-Accelerated Alcohol Catalytic Chemical Vapor Deposition Growth of Vertically Aligned Single-Walled Carbon Nanotubes
journal, April 2009

  • Xiang, Rong; Einarsson, Erik; Okawa, Jun
  • The Journal of Physical Chemistry C, Vol. 113, Issue 18
  • DOI: 10.1021/jp810454f

Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes
journal, March 2010

  • Zhang, Yongyi; Gregoire, John M.; van Dover, R. B.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 14
  • DOI: 10.1021/jp100358j

Plasma-induced alignment of carbon nanotubes
journal, August 2000

  • Bower, Chris; Zhu, Wei; Jin, Sungho
  • Applied Physics Letters, Vol. 77, Issue 6
  • DOI: 10.1063/1.1306658

Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition
journal, October 2000

  • Bower, Chris; Zhou, Otto; Zhu, Wei
  • Applied Physics Letters, Vol. 77, Issue 17
  • DOI: 10.1063/1.1319529

Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition
journal, November 2001

  • Chhowalla, M.; Teo, K. B. K.; Ducati, C.
  • Journal of Applied Physics, Vol. 90, Issue 10
  • DOI: 10.1063/1.1410322

Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass
journal, November 1998


Reversible Diameter Modulation of Single-Walled Carbon Nanotubes by Acetonitrile-Containing Feedstock
journal, March 2013

  • Thurakitseree, Theerapol; Kramberger, Christian; Kumamoto, Akihito
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn3051852

Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes
journal, June 2012


Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity
journal, October 2009


Preparation of Metallic Single-Wall Carbon Nanotubes by Selective Etching
journal, June 2014

  • Hou, Peng-Xiang; Li, Wen-Shan; Zhao, Shi-Yong
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502120k

The Use of NH 3 to Promote the Production of Large-Diameter Single-Walled Carbon Nanotubes with a Narrow ( n,m ) Distribution
journal, February 2011

  • Zhu, Zhen; Jiang, Hua; Susi, Toma
  • Journal of the American Chemical Society, Vol. 133, Issue 5
  • DOI: 10.1021/ja1087634

Chiral-Selective Carbon Nanotube Etching with Ammonia: A Quantum Chemical Investigation
journal, August 2016

  • Eveleens, Clothilde A.; Hijikata, Yuh; Irle, Stephan
  • The Journal of Physical Chemistry C, Vol. 120, Issue 35
  • DOI: 10.1021/acs.jpcc.6b06997

Chiral‐selective etching effects on carbon nanotube growth at edge carbon atoms
journal, December 2018

  • Kimura, Ryuto; Hijikata, Yuh; Eveleens, Clothilde A.
  • Journal of Computational Chemistry, Vol. 40, Issue 2
  • DOI: 10.1002/jcc.25610

Nitrogen controlled iron catalyst phase during carbon nanotube growth
journal, October 2014

  • Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.
  • Applied Physics Letters, Vol. 105, Issue 14
  • DOI: 10.1063/1.4897950

Effect of Catalyst Pretreatment on Chirality-Selective Growth of Single-Walled Carbon Nanotubes
journal, March 2014

  • Fouquet, Martin; Bayer, Bernhard C.; Esconjauregui, Santiago
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp4085348

Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms
journal, January 2017

  • Eveleens, Clothilde A.; Page, Alister J.
  • Nanoscale, Vol. 9, Issue 4
  • DOI: 10.1039/C6NR08222J

Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni
journal, May 2007

  • Zheng, Guishan; Witek, Henryk A.; Bobadova-Parvanova, Petia
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 4
  • DOI: 10.1021/ct600312f

A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
journal, January 1982

  • Swope, William C.; Andersen, Hans C.; Berens, Peter H.
  • The Journal of Chemical Physics, Vol. 76, Issue 1
  • DOI: 10.1063/1.442716

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Energy versus free-energy conservation in first-principles molecular dynamics
journal, May 1992

  • Wentzcovitch, Renata M.; Martins, José Luís; Allen, Philip B.
  • Physical Review B, Vol. 45, Issue 19
  • DOI: 10.1103/PhysRevB.45.11372

Errors in Hellmann-Feynman forces due to occupation-number broadening and how they can be corrected
journal, January 1998


Quantum Chemical Molecular Dynamics Simulation of Single-Walled Carbon Nanotube Cap Nucleation on an Iron Particle
journal, October 2009

  • Ohta, Yasuhito; Okamoto, Yoshiko; Page, Alister J.
  • ACS Nano, Vol. 3, Issue 11
  • DOI: 10.1021/nn900784f

The influence of magnetic moment on carbon nanotube nucleation
journal, August 2016


Comparison of single-walled carbon nanotube growth from Fe and Ni nanoparticles using quantum chemical molecular dynamics methods
journal, September 2010


The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile
journal, October 2003


Thermal reactions of acetonitrile at high temperatures. Pyrolysis behind reflected shocks
journal, January 1987

  • Lifshitz, Assa; Moran, Ahuva; Bidani, Shimon
  • International Journal of Chemical Kinetics, Vol. 19, Issue 1
  • DOI: 10.1002/kin.550190107

Thermal decomposition of acetonitrile. Kinetic modeling
journal, January 1998


Identification of the Strongest Bonds in Chemistry
journal, August 2013

  • Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
  • The Journal of Physical Chemistry A, Vol. 117, Issue 36
  • DOI: 10.1021/jp406200w

Mechanisms of Single-Walled Carbon Nanotube Nucleation, Growth, and Healing Determined Using QM/MD Methods
journal, October 2010

  • Page, Alister J.; Ohta, Yasuhito; Irle, Stephan
  • Accounts of Chemical Research, Vol. 43, Issue 10
  • DOI: 10.1021/ar100064g

QM/MD Simulation of SWNT Nucleation on Transition-Metal Carbide Nanoparticles
journal, November 2010

  • Page, Alister J.; Yamane, Honami; Ohta, Yasuhito
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106264q

Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review
journal, February 2015


Defect Healing during Single-Walled Carbon Nanotube Growth: A Density-Functional Tight-Binding Molecular Dynamics Investigation
journal, September 2009

  • Page, Alister J.; Ohta, Yasuhito; Okamoto, Yoshiko
  • The Journal of Physical Chemistry C, Vol. 113, Issue 47
  • DOI: 10.1021/jp9053549

Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide
journal, September 1996


Model for Self-Assembly of Carbon Nanotubes from Acetylene Based on Real-Time Studies of Vertically Aligned Growth Kinetics
journal, August 2009

  • Eres, Gyula; Rouleau, C. M.; Yoon, Mina
  • The Journal of Physical Chemistry C, Vol. 113, Issue 35
  • DOI: 10.1021/jp9001127

Quantum Chemical Molecular Dynamics Simulations of Dynamic Fullerene Self-Assembly in Benzene Combustion
journal, July 2009

  • Saha, Biswajit; Shindo, Sho; Irle, Stephan
  • ACS Nano, Vol. 3, Issue 8
  • DOI: 10.1021/nn900494s

Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors
journal, December 2015

  • Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10306

Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors
journal, January 2014

  • Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.
  • Nanoscale, Vol. 6, Issue 15
  • DOI: 10.1039/C4NR00669K

The influence of hydrogen on transition metal - Catalysed graphene nucleation
journal, March 2018


Revealing the Dual Role of Hydrogen for Growth Inhibition and Defect Healing in Polycyclic Aromatic Hydrocarbon Formation: QM/MD Simulations
journal, June 2013

  • Li, Hai-Bei; Page, Alister J.; Irle, Stephan
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 14
  • DOI: 10.1021/jz400925f

Atomistic simulation of the growth of defect-free carbon nanotubes
journal, January 2015

  • Xu, Ziwei; Yan, Tianying; Ding, Feng
  • Chemical Science, Vol. 6, Issue 8
  • DOI: 10.1039/C5SC00938C

The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth
journal, January 2018

  • Xu, Ziwei; Qiu, Lu; Ding, Feng
  • Chemical Science, Vol. 9, Issue 11
  • DOI: 10.1039/C7SC04714B

Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests
journal, September 2009

  • Zhong, G.; Hofmann, S.; Yan, F.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 40
  • DOI: 10.1021/jp905134b

Fractional occupations and density-functional energies and forces
journal, June 1992


Works referencing / citing this record:

Analysis of Vibration Frequency of Carbon Nanotubes used as Nano-Force Sensors Considering Clamped Boundary Condition
journal, September 2019