skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Initiation of secondary ice production in clouds

Abstract

Here, the disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms – rime splintering, frozen droplet shattering,and ice–ice collisional breakup – with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice), thermodynamic limitations, and the impact ofparametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates ( N INP ( lim ) ) as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the “phasedness” of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice–ice collisional breakup is the only process for which a meaningful N INP ( lim ) exists (0.002 up to 0.15L–1). For droplet shattering and rime splintering,a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of N INP ( lim ) here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [2]; ORCiD logo [3]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Karlsruhe Institute of Technology, Karlsruhe (Germany)
  3. Georgia Inst. of Technology, Atlanta, GA (United States); ICE-HT, Patras (Greece); National Observatory of Athens, Athens (Greece)
Publication Date:
Research Org.:
Georgia Institute of Technology, Atlanta, GA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1502125
Grant/Contract Number:  
SC0007145
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 18; Journal Issue: 3; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Sullivan, Sylvia C., Hoose, Corinna, Kiselev, Alexei, Leisner, Thomas, and Nenes, Athanasios. Initiation of secondary ice production in clouds. United States: N. p., 2018. Web. doi:10.5194/acp-18-1593-2018.
Sullivan, Sylvia C., Hoose, Corinna, Kiselev, Alexei, Leisner, Thomas, & Nenes, Athanasios. Initiation of secondary ice production in clouds. United States. doi:10.5194/acp-18-1593-2018.
Sullivan, Sylvia C., Hoose, Corinna, Kiselev, Alexei, Leisner, Thomas, and Nenes, Athanasios. Mon . "Initiation of secondary ice production in clouds". United States. doi:10.5194/acp-18-1593-2018. https://www.osti.gov/servlets/purl/1502125.
@article{osti_1502125,
title = {Initiation of secondary ice production in clouds},
author = {Sullivan, Sylvia C. and Hoose, Corinna and Kiselev, Alexei and Leisner, Thomas and Nenes, Athanasios},
abstractNote = {Here, the disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms – rime splintering, frozen droplet shattering,and ice–ice collisional breakup – with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice), thermodynamic limitations, and the impact ofparametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim)) as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the “phasedness” of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice–ice collisional breakup is the only process for which a meaningfulNINP(lim) exists (0.002 up to 0.15L–1). For droplet shattering and rime splintering,a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values ofNINP(lim) here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.},
doi = {10.5194/acp-18-1593-2018},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 3,
volume = 18,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cloud Conditions Favoring Secondary Ice Particle Production in Tropical Maritime Convection
journal, December 2014

  • Heymsfield, Andrew; Willis, Paul
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 12
  • DOI: 10.1175/JAS-D-14-0093.1

Quantification of the Effects of Shattering on Airborne Ice Particle Measurements
journal, November 2013

  • Korolev, A. V.; Emery, E. F.; Strapp, J. W.
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 11
  • DOI: 10.1175/JTECH-D-13-00115.1

Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations
journal, July 2001

  • Rangno, Arthur L.; Hobbs, Peter V.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D14
  • DOI: 10.1029/2000JD900286

High concentrations of biological aerosol particles and ice nuclei during and after rain
journal, January 2013

  • Huffman, J. A.; Prenni, A. J.; DeMott, P. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 13
  • DOI: 10.5194/acp-13-6151-2013

The influence of drop size distribution on the production of secondary ice particles during graupel growth
journal, April 1978

  • Mossop, S. C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 104, Issue 440
  • DOI: 10.1002/qj.49710444007

On measurements of small ice particles in clouds: SMALL PARTICLES IN ICE CLOUDS
journal, December 2007


In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER Pole‐to‐Pole Observation campaigns
journal, October 2013

  • Chubb, Thomas H.; Jensen, Jorgen B.; Siems, Steven T.
  • Geophysical Research Letters, Vol. 40, Issue 19
  • DOI: 10.1002/grl.50986

Ice Particle Concentrations in Clouds
journal, December 1985


Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results
journal, January 2007

  • Fridlind, A. M.; Ackerman, A. S.; McFarquhar, G.
  • Journal of Geophysical Research, Vol. 112, Issue D24
  • DOI: 10.1029/2007JD008646

The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds
journal, June 2015

  • Lawson, R. Paul; Woods, Sarah; Morrison, Hugh
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 6
  • DOI: 10.1175/JAS-D-14-0274.1

Production of secondary ice particles during the riming process
journal, May 1974


Fast Dynamics of Water Droplets Freezing from the Outside In
journal, February 2017


Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments
journal, January 2012


Observations of cloud microphysics and ice formation during COPE
journal, January 2016

  • Taylor, J. W.; Choularton, T. W.; Blyth, A. M.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 2
  • DOI: 10.5194/acp-16-799-2016

Factors controlling secondary ice production in cumulus clouds: Factors Controlling Secondary Ice Production in Cumulus
journal, January 2017

  • Huang, Yahui; Blyth, Alan M.; Brown, Philip R. A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 143, Issue 703
  • DOI: 10.1002/qj.2987

Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate: AEROSOL EFFECTS ON SNOWFALL RATE
journal, May 2003

  • Borys, Randolph D.; Lowenthal, Douglas H.; Cohn, Stephen A.
  • Geophysical Research Letters, Vol. 30, Issue 10
  • DOI: 10.1029/2002GL016855

Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds: ICE NUCLEI IN RAIN DROPLETS
journal, February 2017

  • Paukert, M.; Hoose, C.; Simmel, M.
  • Journal of Advances in Modeling Earth Systems, Vol. 9, Issue 1
  • DOI: 10.1002/2016MS000841

Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds
journal, January 2011

  • Lance, S.; Shupe, M. D.; Feingold, G.
  • Atmospheric Chemistry and Physics Discussions, Vol. 11, Issue 2
  • DOI: 10.5194/acpd-11-6737-2011

A Multisensor Investigation of Rime Splintering in Tropical Maritime Cumuli
journal, June 2016

  • Lasher-Trapp, Sonia; Leon, David C.; DeMott, Paul J.
  • Journal of the Atmospheric Sciences, Vol. 73, Issue 6
  • DOI: 10.1175/JAS-D-15-0285.1

Drop Freezing Through Drop Breakup
journal, July 1965


Aircraft Observations of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a “New” Secondary Ice Process
journal, September 2017

  • Lawson, Paul; Gurganus, Colin; Woods, Sarah
  • Journal of the Atmospheric Sciences, Vol. 74, Issue 9
  • DOI: 10.1175/JAS-D-17-0033.1

Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds
journal, November 2013

  • Fan, J.; Leung, L. R.; Rosenfeld, D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 48
  • DOI: 10.1073/pnas.1316830110

Bioaerosols in the Earth system: Climate, health, and ecosystem interactions
journal, December 2016


Numerical modelling of mixed-phase frontal clouds observed during the CWVC project
journal, April 2005

  • Clark, P. D.; Choularton, T. W.; Brown, P. R. A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 608
  • DOI: 10.1256/qj.03.210

Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling
journal, January 2012

  • Crawford, I.; Bower, K. N.; Choularton, T. W.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 11
  • DOI: 10.5194/acp-12-4963-2012

Measurements of ice nucleating aerosols during SUCCESS
journal, May 1998

  • Rogers, David C.; DeMott, Paul J.; Kreidenweis, Sonia M.
  • Geophysical Research Letters, Vol. 25, Issue 9
  • DOI: 10.1029/97GL03478

The Effect of Dynamics on Mixed-Phase Clouds: Theoretical Considerations
journal, January 2008

  • Korolev, Alexei; Field, Paul R.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 1
  • DOI: 10.1175/2007JAS2355.1

The relevance of nanoscale biological fragments for ice nucleation in clouds
journal, January 2015

  • O′Sullivan, D.; Murray, B. J.; Ross, J. F.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08082

Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds
journal, January 2011

  • Lance, S.; Shupe, M. D.; Feingold, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-8003-2011

Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds
journal, January 1991

  • Rangno, Arthur L.; Hobbs, Peter V.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 117, Issue 497
  • DOI: 10.1002/qj.49711749710

Cloud-resolving simulations of intense tropicalHector thunderstorms: Implications for aerosol–cloud interactions
journal, October 2006

  • Connolly, P. J.; Choularton, T. W.; Gallagher, M. W.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 132, Issue 621C
  • DOI: 10.1256/qj.05.86

Predicting global atmospheric ice nuclei distributions and their impacts on climate
journal, June 2010

  • DeMott, P. J.; Prenni, A. J.; Liu, X.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 25
  • DOI: 10.1073/pnas.0910818107

Secondary ice particle production during rime growth: The effect of drop size distribution and rimer velocity
journal, October 1985

  • Mossop, S. C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 111, Issue 470
  • DOI: 10.1002/qj.49711147012

Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments
journal, January 2012


A 3(2) pair of Runge - Kutta formulas
journal, January 1989


Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany: Ice Nucleation Activity of Soil Dust
journal, November 2016

  • Steinke, I.; Funk, R.; Busse, J.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 22
  • DOI: 10.1002/2016JD025160

Anthropogenic Aerosol Influences on Mixed-Phase Clouds
journal, February 2017


Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions
journal, January 2008

  • Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.
  • Biogeosciences, Vol. 5, Issue 5
  • DOI: 10.5194/bg-5-1425-2008

Chapter 7. Secondary Ice Production - current state of the science and recommendations for the future
journal, November 2016


Sea spray aerosol as a unique source of ice nucleating particles
journal, December 2015

  • DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 21
  • DOI: 10.1073/pnas.1514034112

Temperature dependence of secondary ice crystal production during soft hail growth by riming
journal, July 1984

  • Heymsfield, Andrew J.; Mossop, S. C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 110, Issue 465
  • DOI: 10.1002/qj.49711046512

Ice particle concentrations and precipitation development in small continental cumuliform clouds
journal, April 1994

  • Rangno, Arthur L.; Hobbs, Peter V.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 120, Issue 517
  • DOI: 10.1002/qj.49712051705

Biological residues define the ice nucleation properties of soil dust
journal, January 2011

  • Conen, F.; Morris, C. E.; Leifeld, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 18
  • DOI: 10.5194/acp-11-9643-2011

Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations
journal, October 2014

  • Zhang, Damao; Wang, Zhien; Heymsfield, Andrew
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 10
  • DOI: 10.1175/JAS-D-13-0354.1

On the role of ice‐nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems
journal, February 2017

  • Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan
  • Geophysical Research Letters, Vol. 44, Issue 3
  • DOI: 10.1002/2016GL072455

Investigating the contribution of secondary ice production to in‐cloud ice crystal numbers
journal, September 2017

  • Sullivan, S. C.; Hoose, C.; Nenes, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 17
  • DOI: 10.1002/2017JD026546

Aerosol invigoration and restructuring of Atlantic convective clouds: AEROSOL RESTRUCTURING CONVECTIVE CLOUDS
journal, July 2005

  • Koren, Ilan; Kaufman, Yoram J.; Rosenfeld, Daniel
  • Geophysical Research Letters, Vol. 32, Issue 14
  • DOI: 10.1029/2005GL023187

Ice–Ice Collisions: An Ice Multiplication Process in Atmospheric Clouds
journal, February 2011

  • Yano, J. -I.; Phillips, V. T. J.
  • Journal of the Atmospheric Sciences, Vol. 68, Issue 2
  • DOI: 10.1175/2010JAS3607.1

Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements
journal, January 2015


Explosive ice multiplication by mechanical break-up in ice-ice collisions: a dynamical system-based study: Explosive Ice Multiplication
journal, November 2015

  • Yano, Jun-Ichi; Phillips, Vaughan T. J.; Kanawade, Vijay
  • Quarterly Journal of the Royal Meteorological Society, Vol. 142, Issue 695
  • DOI: 10.1002/qj.2687

The rapid glaciation of slightly supercooled cumulus clouds
journal, January 1996

  • Mason, B. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 122, Issue 530
  • DOI: 10.1002/qj.49712253003

Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms
journal, July 1992


The fragmentation and electrification of freezing water drops
journal, April 1960

  • Mason, B. J.; Maybank, J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 86, Issue 368
  • DOI: 10.1002/qj.49708636806

Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere
journal, November 2013

  • Morris, Cindy E.; Conen, Franz; Alex Huffman, J.
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12447

Fragmentation of Freezing Drops in Shallow Maritime Frontal Clouds
journal, April 2008


Some general implicit processes for the numerical solution of differential equations
journal, April 1963


Ice Particle Concentrations in Clouds
journal, December 1985


Drop Freezing Through Drop Breakup
journal, July 1965


    Works referencing / citing this record:

    Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements
    journal, January 2019

    • Marinou, Eleni; Tesche, Matthias; Nenes, Athanasios
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
    • DOI: 10.5194/acp-19-11315-2019

    Forests, atmospheric water and an uncertain future: the new biology of the global water cycle
    journal, March 2018


    Mixed-phase orographic cloud microphysics during StormVEx and IFRACS
    journal, January 2019

    • Lowenthal, Douglas H.; Hallar, A. Gannet; David, Robert O.
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 8
    • DOI: 10.5194/acp-19-5387-2019

    The Role of Secondary Ice Processes in Midlatitude Continental Clouds
    journal, November 2018

    • Zipori, Assaf; Reicher, Naama; Erel, Yigal
    • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 22
    • DOI: 10.1029/2018jd029146

    Characterization of Ice‐Nucleating Particles Over Northern India
    journal, October 2019

    • Yadav, S.; Venezia, R. E.; Paerl, R. W.
    • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 19
    • DOI: 10.1029/2019jd030702

    The impact of secondary ice production on Arctic stratocumulus
    journal, January 2020

    • Sotiropoulou, Georgia; Sullivan, Sylvia; Savre, Julien
    • Atmospheric Chemistry and Physics, Vol. 20, Issue 3
    • DOI: 10.5194/acp-20-1301-2020

    A representation of the collisional ice break-up process in the two-moment microphysics LIMA v1.0 scheme of Meso-NH
    journal, January 2018

    • Hoarau, Thomas; Pinty, Jean-Pierre; Barthe, Christelle
    • Geoscientific Model Development, Vol. 11, Issue 10
    • DOI: 10.5194/gmd-11-4269-2018

    Bioaerosol field measurements: Challenges and perspectives in outdoor studies
    journal, November 2019


    Observations of the microphysical evolution of convective clouds in the southwest of the United Kingdom
    journal, January 2018

    • Jackson, Robert; French, Jeffrey R.; Leon, David C.
    • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
    • DOI: 10.5194/acp-18-15329-2018

    Concentration and variability of ice nuclei in the subtropical maritime boundary layer
    journal, January 2018

    • Welti, André; Müller, Konrad; Fleming, Zoë L.
    • Atmospheric Chemistry and Physics, Vol. 18, Issue 8
    • DOI: 10.5194/acp-18-5307-2018

    Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust:a closure study
    journal, January 2019

    • Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Bühl, Johannes
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 23
    • DOI: 10.5194/acp-19-15087-2019

    New type of evidence for secondary ice formation at around −15 °C in mixed-phase clouds
    journal, January 2019

    • Mignani, Claudia; Creamean, Jessie M.; Zimmermann, Lukas
    • Atmospheric Chemistry and Physics, Vol. 19, Issue 2
    • DOI: 10.5194/acp-19-877-2019