Representing local atomic environment using descriptors based on local correlations
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physics Division
Statistical learning of material properties is an emerging topic of research and has been tremendously successful in areas such as representing complex energy landscapes as well as in technologically relevant areas, like identification of better catalysts and electronic materials. However, analysis of large data sets to efficiently learn characteristic features of a complex energy landscape, for example, depends on the ability of descriptors to effectively screen different local atomic environments. Thus, discovering appropriate descriptors of bulk or defect properties and the functional dependence of such properties on these descriptors remains a difficult and tedious process. To this end, we develop here a framework to generate descriptors based on many-body correlations that can effectively capture intrinsic geometric features of the local environment of an atom. These descriptors are based on the spectrum of two-body, three-body, four-body, and higher order correlations between an atom and its neighbors and are evaluated by calculating the corresponding two-body, three-body, and four-body overlap integrals. They are invariant to global translation, global rotation, reflection, and permutations of atomic indices. By systematically testing the ability to capture the local atomic environment, it is shown that the local correlation descriptors are able to successfully reconstruct structures containing 10-25 atoms which was previously not possible.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC52-07NA27344
- OSTI ID:
- 1502005
- Report Number(s):
- LLNL-JRNL-757813; 945702
- Journal Information:
- Journal of Chemical Physics, Vol. 149, Issue 24; ISSN 0021-9606
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity
Investigating phase transitions from local crystallographic analysis based on statistical learning of atomic environments in 2D MoS2-ReS2