skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes

Abstract

Advancements in micro-scale additive manufacturing techniques have made it possible to fabricate intricate architectures including 3D interpenetrating electrode microstructures. A mesoscale electrochemical lithium-ion battery model is presented and implemented in the PETSc software framework using a finite volume scheme. The model is used to investigate interpenetrating 3D electrode architectures that offer potential energy density and power density improvements over traditional particle bed battery geometries. Using the computational model, a variety of battery electrode geometries are simulated and compared across various battery discharge rates and length scales to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density vs. power density relationship of the electrode microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle-bed electrode designs are predicted, and electrode microarchitectures derived from minimal surfaces are shown to be superior under a minimum feature size constraint, especially when subjected to high discharge currents. An average Thiele modulus formulation is presented as a back-of-the-envelope calculation to predict the performance trends of microbattery electrode geometries.

Authors:
ORCiD logo; ; ; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); LLNL Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1501944
Alternate Identifier(s):
OSTI ID: 1502974
Report Number(s):
SAND2019-2973J
Journal ID: ISSN 0013-4651; /jes/166/6/A923.atom
Grant/Contract Number:  
NA0003525; AC52-07NA27344
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 166 Journal Issue: 6; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; electrochemical engineering; addative; electrode; interpenetrating

Citation Formats

Trembacki, Bradley, Duoss, Eric, Oxberry, Geoffrey, Stadermann, Michael, and Murthy, Jayathi. Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes. United States: N. p., 2019. Web. doi:10.1149/2.0031906jes.
Trembacki, Bradley, Duoss, Eric, Oxberry, Geoffrey, Stadermann, Michael, & Murthy, Jayathi. Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes. United States. doi:10.1149/2.0031906jes.
Trembacki, Bradley, Duoss, Eric, Oxberry, Geoffrey, Stadermann, Michael, and Murthy, Jayathi. Tue . "Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes". United States. doi:10.1149/2.0031906jes.
@article{osti_1501944,
title = {Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes},
author = {Trembacki, Bradley and Duoss, Eric and Oxberry, Geoffrey and Stadermann, Michael and Murthy, Jayathi},
abstractNote = {Advancements in micro-scale additive manufacturing techniques have made it possible to fabricate intricate architectures including 3D interpenetrating electrode microstructures. A mesoscale electrochemical lithium-ion battery model is presented and implemented in the PETSc software framework using a finite volume scheme. The model is used to investigate interpenetrating 3D electrode architectures that offer potential energy density and power density improvements over traditional particle bed battery geometries. Using the computational model, a variety of battery electrode geometries are simulated and compared across various battery discharge rates and length scales to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density vs. power density relationship of the electrode microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle-bed electrode designs are predicted, and electrode microarchitectures derived from minimal surfaces are shown to be superior under a minimum feature size constraint, especially when subjected to high discharge currents. An average Thiele modulus formulation is presented as a back-of-the-envelope calculation to predict the performance trends of microbattery electrode geometries.},
doi = {10.1149/2.0031906jes},
journal = {Journal of the Electrochemical Society},
number = 6,
volume = 166,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1149/2.0031906jes

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells
journal, January 2007

  • Liu, G.; Zheng, H.; Simens, A. S.
  • Journal of The Electrochemical Society, Vol. 154, Issue 12
  • DOI: 10.1149/1.2792293

Review of Battery Systems for Electrically Powered Vehicles
conference, May 1968

  • Ragone, D. V.
  • Mid-Year Meeting, SAE Technical Paper Series
  • DOI: 10.4271/680453

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Governing Equations for Transport in Porous Electrodes
journal, January 1997

  • De Vidts, Pauline
  • Journal of The Electrochemical Society, Vol. 144, Issue 4
  • DOI: 10.1149/1.1837595

Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
journal, August 2016

  • Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4035198

The use of mathematical modeling in the design of lithium/polymer battery systems
journal, October 1995


A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes
journal, January 2014

  • Roberts, Scott A.; Brunini, Victor E.; Long, Kevin N.
  • Journal of The Electrochemical Society, Vol. 161, Issue 11
  • DOI: 10.1149/2.0081411jes

Modeling of lithium-ion batteries
journal, June 2003


Three-Phase Multiscale Modeling of a LiCoO 2 Cathode: Combining the Advantages of FIB-SEM Imaging and X-Ray Tomography
journal, November 2014

  • Zielke, Lukas; Hutzenlaub, Tobias; Wheeler, Dean R.
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401612

High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes
journal, April 2013

  • Pikul, James H.; Gang Zhang, Hui; Cho, Jiung
  • Nature Communications, Vol. 4, Article No. 1732
  • DOI: 10.1038/ncomms2747

Effect of particle size on LiMnPO4 cathodes
journal, December 2007


Simulation and Optimization of the Dual Lithium Ion Insertion Cell
journal, January 1994

  • Fuller, Thomas F.
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054684

High power rechargeable batteries
journal, August 2012

  • Braun, Paul V.; Cho, Jiung; Pikul, James H.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 4
  • DOI: 10.1016/j.cossms.2012.05.002

Additive Manufacturing: Rethinking Battery Design
journal, January 2016


Thermal-Electrochemical Modeling of Battery Systems
journal, January 2000

  • Gu, W. B.; Wang, C. Y.
  • Journal of The Electrochemical Society, Vol. 147, Issue 8
  • DOI: 10.1149/1.1393625

Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Fabrication of High-Aspect-Ratio Electrode Arrays for Three-Dimensional Microbatteries
journal, August 2007

  • Chamran, Fardad; Yeh, Yuting; Min, Hong-Seok
  • Journal of Microelectromechanical Systems, Vol. 16, Issue 4
  • DOI: 10.1109/JMEMS.2007.901638

Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries
journal, August 2001

  • Wohlgemuth, Meinhard; Yufa, Nataliya; Hoffman, James
  • Macromolecules, Vol. 34, Issue 17
  • DOI: 10.1021/ma0019499

3D Printing of Interdigitated Li-Ion Microbattery Architectures
journal, June 2013

  • Sun, Ke; Wei, Teng-Sing; Ahn, Bok Yeop
  • Advanced Materials, Vol. 25, Issue 33, p. 4539-4543
  • DOI: 10.1002/adma.201301036

High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration
journal, April 2008

  • Baggetto, Loıc; Niessen, Rogier A. H.; Roozeboom, Fred
  • Advanced Functional Materials, Vol. 18, Issue 7
  • DOI: 10.1002/adfm.200701245

Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries
journal, February 2016


X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes
journal, March 2013

  • Ebner, Martin; Geldmacher, Felix; Marone, Federica
  • Advanced Energy Materials, Vol. 3, Issue 7
  • DOI: 10.1002/aenm.201200932

Mathematical modeling of lithium-ion and nickel battery systems
journal, August 2002

  • Gomadam, Parthasarathy M.; Weidner, John W.; Dougal, Roger A.
  • Journal of Power Sources, Vol. 110, Issue 2, p. 267-284
  • DOI: 10.1016/S0378-7753(02)00190-8

Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation
journal, January 2012

  • Less, G. B.; Seo, J. H.; Han, S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.096205jes

Three-Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness
journal, May 2014

  • Duoss, Eric B.; Weisgraber, Todd H.; Hearon, Keith
  • Advanced Functional Materials, Vol. 24, Issue 31
  • DOI: 10.1002/adfm.201400451

Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells
journal, January 1998

  • Wang, C. Y.
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838820

Morphological Influence in Lithium-Ion Battery 3D Electrode Architectures
journal, January 2015

  • Martin, Michael A.; Chen, Chien-Fan; Mukherjee, Partha P.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0631506jes

Three-dimensional electrodes and battery architectures
journal, July 2011

  • Arthur, Timothy S.; Bates, Daniel J.; Cirigliano, Nicolas
  • MRS Bulletin, Vol. 36, Issue 7
  • DOI: 10.1557/mrs.2011.156

Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells
journal, January 1996

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836921

Mesoscale Effective Property Simulations Incorporating Conductive Binder
journal, January 2017

  • Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0601711jes

3D direct writing fabrication of electrodes for electrochemical storage devices
journal, June 2017


Multifunctional Composites: Optimizing Microstructures for Simultaneous Transport of Heat and Electricity
journal, December 2002


Three-Dimensional Battery Architectures
journal, October 2004

  • Long, Jeffrey W.; Dunn, Bruce; Rolison, Debra R.
  • Chemical Reviews, Vol. 104, Issue 10, p. 4463-4492
  • DOI: 10.1021/cr020740l

A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries
journal, September 2016


3D printed functional nanomaterials for electrochemical energy storage
journal, August 2017


Validity of the Bruggeman relation for porous electrodes
journal, October 2013

  • Chung, Ding-Wen; Ebner, Martin; Ely, David R.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074009

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Cathode Performance as a Function of Inactive Material and Void Fractions
journal, January 2010

  • Zheng, Honghe; Liu, Gao; Song, Xiangyun
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3459878

3-D Microbatteries
journal, February 2003


A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing
journal, April 2017


Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes
journal, January 2013


Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models
journal, March 2012


Overcharge Performance of 3,7-Bis(trifluoromethyl)- N -ethylphenothiazine at High Concentration in Lithium-Ion Batteries
journal, October 2015

  • Kaur, Aman Preet; Elliott, Corrine F.; Ergun, Selin
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0951514jes

A Pressure-Based Method for Unstructured Meshes
journal, March 1997

  • Mathur, S. R.; Murthy, J. Y.
  • Numerical Heat Transfer, Part B: Fundamentals, Vol. 31, Issue 2
  • DOI: 10.1080/10407799708915105

Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials
journal, May 2010


Modelling electrode material utilization in the trench model 3D-microbattery by finite element analysis
journal, September 2010


Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery
journal, April 2008


Structural Optimization of 3D Porous Electrodes for High-Rate Performance Lithium Ion Batteries
journal, December 2014

  • Ye, Jianchao; Baumgaertel, Andreas C.; Wang, Y. Morris
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn505490u

Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
journal, January 2018

  • Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 7
  • DOI: 10.1021/acsami.7b17771

Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling
journal, August 2002


Novel architecture of composite electrode for optimization of lithium battery performance
journal, June 2006