DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detection of thermodynamic "valley noise" in monolayer semiconductors: access to intrinsic valley relaxation timescales

Abstract

Together with charge and spin, many novel two-dimensional materials also permit information to be encoded in an electron’s valley degree of freedom—that is, in particular momentum states in the material’s Brillouin zone. With a view toward valley-based (opto)electronic technologies, the intrinsic time scales of valley scattering are therefore of fundamental interest. Here, we demonstrate an entirely noise-based approach for exploring valley dynamics in monolayer transition-metal dichalcogenide semiconductors. Exploiting their valley-specific optical selection rules, we use optical Faraday rotation to passively detect the thermodynamic fluctuations of valley polarization in a Fermi sea of resident carriers. This spontaneous “valley noise” reveals narrow Lorentzian line shapes and, therefore, long exponentially-decaying intrinsic valley relaxation. Moreover, the noise signatures validate both the relaxation times and the spectral dependence of conventional (perturbative) pump-probe measurements. These results provide a viable route toward quantitative measurements of intrinsic valley dynamics, free from any external perturbation, pumping, or excitation.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [2];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1501810
Report Number(s):
LA-UR-18-27841
Journal ID: ISSN 2375-2548
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 5; Journal Issue: 3; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; High Magnetic Field Science

Citation Formats

Goryca, Mateusz Marek, Crooker, Scott A., Xu, Xiaodong, Wilson, Nathan, and Dey, Prasenjit. Detection of thermodynamic "valley noise" in monolayer semiconductors: access to intrinsic valley relaxation timescales. United States: N. p., 2019. Web. doi:10.1126/sciadv.aau4899.
Goryca, Mateusz Marek, Crooker, Scott A., Xu, Xiaodong, Wilson, Nathan, & Dey, Prasenjit. Detection of thermodynamic "valley noise" in monolayer semiconductors: access to intrinsic valley relaxation timescales. United States. https://doi.org/10.1126/sciadv.aau4899
Goryca, Mateusz Marek, Crooker, Scott A., Xu, Xiaodong, Wilson, Nathan, and Dey, Prasenjit. Fri . "Detection of thermodynamic "valley noise" in monolayer semiconductors: access to intrinsic valley relaxation timescales". United States. https://doi.org/10.1126/sciadv.aau4899. https://www.osti.gov/servlets/purl/1501810.
@article{osti_1501810,
title = {Detection of thermodynamic "valley noise" in monolayer semiconductors: access to intrinsic valley relaxation timescales},
author = {Goryca, Mateusz Marek and Crooker, Scott A. and Xu, Xiaodong and Wilson, Nathan and Dey, Prasenjit},
abstractNote = {Together with charge and spin, many novel two-dimensional materials also permit information to be encoded in an electron’s valley degree of freedom—that is, in particular momentum states in the material’s Brillouin zone. With a view toward valley-based (opto)electronic technologies, the intrinsic time scales of valley scattering are therefore of fundamental interest. Here, we demonstrate an entirely noise-based approach for exploring valley dynamics in monolayer transition-metal dichalcogenide semiconductors. Exploiting their valley-specific optical selection rules, we use optical Faraday rotation to passively detect the thermodynamic fluctuations of valley polarization in a Fermi sea of resident carriers. This spontaneous “valley noise” reveals narrow Lorentzian line shapes and, therefore, long exponentially-decaying intrinsic valley relaxation. Moreover, the noise signatures validate both the relaxation times and the spectral dependence of conventional (perturbative) pump-probe measurements. These results provide a viable route toward quantitative measurements of intrinsic valley dynamics, free from any external perturbation, pumping, or excitation.},
doi = {10.1126/sciadv.aau4899},
journal = {Science Advances},
number = 3,
volume = 5,
place = {United States},
year = {Fri Mar 01 00:00:00 EST 2019},
month = {Fri Mar 01 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1. Fig. 1. : Sample, experimental setup, and valley noise spectrum of resident holes in monolayer WSe2. (A) Sample: A single WSe2 monolayer is sandwiched between hBN layers and electrically gated. (B) Band structure and σ± optical transitions of hole-doped monolayer WSe2. Even in thermal equilibrium, resident holes spontaneously scatter between K and K′ valleys, giving a randomly fluctuating valley polarization noise. (C) To detect valley noise, a CW probe laser is linearly polarized and focused through the sample. Thermodynamic valley fluctuations impart FR fluctuationsmore » $\delta$$\theta$F(t) on the probe laser, which are detected using balanced photodiodes. LP, linear polarizer; PBS, polarizing beam splitter; FFT, fast Fourier transform. (D) The valley noise power spectrum (squares) of resident holes inmonolayer WSe2. Its Lorentzian line shape (solid line) with full width $Γ$ indicates an exponentially decaying valley correlation with relaxation time scale τv = 1/$π$$Γ$ = 430 ± 20 ns. Inset: Valley relaxationmeasured separately in a perturbative pump-probe experiment.« less

Save / Share:

Works referenced in this record:

Coupled Spin and Valley Physics in Monolayers of MoS 2 and Other Group-VI Dichalcogenides
journal, May 2012


Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons
journal, June 2017

  • Zhou, You; Scuri, Giovanni; Wild, Dominik S.
  • Nature Nanotechnology, Vol. 12, Issue 9
  • DOI: 10.1038/nnano.2017.106

Many-Body Effects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS 2
journal, December 2013

  • Mai, Cong; Barrette, Andrew; Yu, Yifei
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl403742j

Valley dynamics probed through charged and neutral exciton emission in monolayer WSe 2
journal, August 2014


Optically initialized robust valley-polarized holes in monolayer WSe2
journal, November 2015

  • Hsu, Wei-Ting; Chen, Yen-Lun; Chen, Chang-Hsiao
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9963

Valley filter and valley valve in graphene
journal, February 2007

  • Rycerz, A.; Tworzydło, J.; Beenakker, C. W. J.
  • Nature Physics, Vol. 3, Issue 3, p. 172-175
  • DOI: 10.1038/nphys547

Valley and spin dynamics in MoSe 2 two-dimensional crystals
journal, January 2014

  • Kumar, Nardeep; He, Jiaqi; He, Dawei
  • Nanoscale, Vol. 6, Issue 21
  • DOI: 10.1039/C4NR03607G

Transport Theory of Monolayer Transition-Metal Dichalcogenides through Symmetry
journal, July 2013


Magnetic brightening and control of dark excitons in monolayer WSe2
journal, June 2017

  • Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang
  • Nature Nanotechnology, Vol. 12, Issue 9
  • DOI: 10.1038/nnano.2017.105

Spin and pseudospins in layered transition metal dichalcogenides
journal, April 2014

  • Xu, Xiaodong; Yao, Wang; Xiao, Di
  • Nature Physics, Vol. 10, Issue 5
  • DOI: 10.1038/nphys2942

Spin-noise spectroscopy: from proof of principle to applications
journal, January 2013


Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides
journal, January 2017


In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules
journal, July 2017


Valley Splitting of AlAs Two-Dimensional Electrons in a Perpendicular Magnetic Field
journal, November 2002


k · p theory for two-dimensional transition metal dichalcogenide semiconductors
journal, April 2015


Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide
journal, September 2016

  • Plechinger, Gerd; Nagler, Philipp; Arora, Ashish
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12715

Valley Susceptibility of an Interacting Two-Dimensional Electron System
journal, November 2006


Intervalley dark trion states with spin lifetimes of 150 ns in WSe 2
journal, June 2017


Valley-dependent optoelectronics from inversion symmetry breaking
journal, June 2008


Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport
journal, December 2007


Long valley relaxation time of free carriers in monolayer WSe 2
journal, June 2017


Spectroscopy of spontaneous spin noise as a probe of spin dynamics and magnetic resonance
journal, September 2004

  • Crooker, S. A.; Rickel, D. G.; Balatsky, A. V.
  • Nature, Vol. 431, Issue 7004
  • DOI: 10.1038/nature02804

Long-Lived Hole Spin/Valley Polarization Probed by Kerr Rotation in Monolayer WSe 2
journal, July 2016


Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2
journal, August 2015

  • Yang, Luyi; Sinitsyn, Nikolai A.; Chen, Weibing
  • Nature Physics, Vol. 11, Issue 10
  • DOI: 10.1038/nphys3419

Valley Carrier Dynamics in Monolayer Molybdenum Disulfide from Helicity-Resolved Ultrafast Pump–Probe Spectroscopy
journal, November 2013

  • Wang, Qinsheng; Ge, Shaofeng; Li, Xiao
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn405419h

Gate-Controlled Spin-Valley Locking of Resident Carriers in WSe 2 Monolayers
journal, September 2017


Imaging spin dynamics in monolayer WS 2 by time-resolved Kerr rotation microscopy
journal, November 2017

  • McCormick, Elizabeth J.; Newburger, Michael J.; Luo, Yunqiu Kelly
  • 2D Materials, Vol. 5, Issue 1
  • DOI: 10.1088/2053-1583/aa98ae

Valley-selective circular dichroism of monolayer molybdenum disulphide
journal, January 2012

  • Cao, Ting; Wang, Gang; Han, Wenpeng
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1882

Valleytronics in 2D materials
journal, August 2016


Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides
journal, December 2014


Observation of ultralong valley lifetime in WSe 2 /MoS 2 heterostructures
journal, July 2017


Spin noise of conduction electrons in n -type bulk GaAs
journal, January 2009


The fluctuation-dissipation theorem
journal, January 1966


Field-induced polarization of Dirac valleys in bismuth
journal, October 2011

  • Zhu, Zengwei; Collaudin, Aurélie; Fauqué, Benoît
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2111

Generation, transport and detection of valley-polarized electrons in diamond
journal, July 2013

  • Isberg, Jan; Gabrysch, Markus; Hammersberg, Johan
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3694

Control of valley polarization in monolayer MoS2 by optical helicity
journal, June 2012


Twist-tailoring Coulomb correlations in van der Waals homobilayers
text, January 2020

  • Merkl, Philipp; Mooshammer, Fabian; Brem, Samuel
  • Universität Regensburg
  • DOI: 10.5283/epub.43186

Spin noise spectroscopy in GaAs
other, January 2005

  • Oestreich, Michael; Römer, M.; Haug, Rolf J.
  • College Park, MD : American Physical Society
  • DOI: 10.15488/2088

Valley Dependent Optoelectronics from Inversion Symmetry Breaking
text, January 2007


Valley-based noise-resistant quantum computation using Si quantum dots
text, January 2011


k.p theory for two-dimensional transition metal dichalcogenide semiconductors
text, January 2014


Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS_2 and WS_2
text, January 2015


Imaging Spin Dynamics in Monolayer WS2 by Time-Resolved Kerr Rotation Microscopy
text, January 2016


Magnetic brightening and control of dark excitons in monolayer WSe2
text, January 2016


Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field
text, January 2002


Spin noise spectroscopy in GaAs
text, January 2005


Valley susceptibility of an interacting two-dimensional electron system
text, January 2006


Valley filter and valley valve in graphene
text, January 2006


Long-Lived Hole Spin/Valley Polarization Probed by Kerr Rotation in Monolayer WSe 2
journal, July 2016


Many-Body Effects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS 2
journal, December 2013

  • Mai, Cong; Barrette, Andrew; Yu, Yifei
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl403742j

Valley-selective circular dichroism of monolayer molybdenum disulphide
journal, January 2012

  • Cao, Ting; Wang, Gang; Han, Wenpeng
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1882

Optically initialized robust valley-polarized holes in monolayer WSe2
journal, November 2015

  • Hsu, Wei-Ting; Chen, Yen-Lun; Chen, Chang-Hsiao
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9963

Generation, transport and detection of valley-polarized electrons in diamond
journal, July 2013

  • Isberg, Jan; Gabrysch, Markus; Hammersberg, Johan
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3694

Valley-Based Noise-Resistant Quantum Computation Using Si Quantum Dots
journal, March 2012


Optical Spectroscopy of Spin Noise
journal, April 2013


Long-Lived Valley Polarization of Intravalley Trions in Monolayer WSe 2
journal, December 2016


Spin Noise Spectroscopy in GaAs
journal, November 2005


"Listening" to the spin noise of conduction electrons in bulk n:GaAs
text, January 2009


Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides
text, January 2016


Inter-valley dark trion states with spin lifetimes of 150 ns in WSe$_2$
text, January 2017


Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field
text, January 2002


Works referencing / citing this record:

Detection and amplification of spin noise using scattered laser light in a quantum-dot microcavity
journal, January 2020


Detection and amplification of spin noise using scattered laser light in a quantum-dot microcavity
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.