DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy flow polynomials: a complete linear basis for jet substructure

Abstract

We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. Lastly, the energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.

Authors:
 [1];  [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Center for Theoretical Physics
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
OSTI Identifier:
1501473
Grant/Contract Number:  
SC0011090; SC0012567
Resource Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2018; Journal Issue: 4; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Jets; QCD Phenomenology

Citation Formats

Komiske, Patrick T., Metodiev, Eric M., and Thaler, Jesse. Energy flow polynomials: a complete linear basis for jet substructure. United States: N. p., 2018. Web. doi:10.1007/jhep04(2018)013.
Komiske, Patrick T., Metodiev, Eric M., & Thaler, Jesse. Energy flow polynomials: a complete linear basis for jet substructure. United States. https://doi.org/10.1007/jhep04(2018)013
Komiske, Patrick T., Metodiev, Eric M., and Thaler, Jesse. Wed . "Energy flow polynomials: a complete linear basis for jet substructure". United States. https://doi.org/10.1007/jhep04(2018)013. https://www.osti.gov/servlets/purl/1501473.
@article{osti_1501473,
title = {Energy flow polynomials: a complete linear basis for jet substructure},
author = {Komiske, Patrick T. and Metodiev, Eric M. and Thaler, Jesse},
abstractNote = {We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. Lastly, the energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.},
doi = {10.1007/jhep04(2018)013},
journal = {Journal of High Energy Physics (Online)},
number = 4,
volume = 2018,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Theory of jet Definition
journal, August 2002


What is the machine learning?
journal, March 2018


Boosted top quark techniques and searches for tt̄ resonances at the LHC
journal, July 2013


Power corrections to event shapes and factorization
journal, August 1999


Power corrections to event shapes with mass-dependent operators
journal, January 2013


Hadron masses and power corrections to event shapes
journal, May 2001


How much information is in a jet?
journal, June 2017


Operator bases, S-matrices, and their partition functions
journal, October 2017

  • Henning, Brian; Lu, Xiaochuan; Melia, Tom
  • Journal of High Energy Physics, Vol. 2017, Issue 10
  • DOI: 10.1007/JHEP10(2017)199

Unsafe but calculable: ratios of angularities in perturbative QCD
journal, September 2013

  • Larkoski, Andrew J.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2013, Issue 9
  • DOI: 10.1007/JHEP09(2013)137

Seeing in Color: Jet Superstructure
journal, July 2010


Deep learning in color: towards automated quark/gluon jet discrimination
journal, January 2017

  • Komiske, Patrick T.; Metodiev, Eric M.; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2017, Issue 1
  • DOI: 10.1007/JHEP01(2017)110

FastJet user manual: (for version 3.0.2)
journal, March 2012


The Generalized Weierstrass Approximation Theorem
journal, May 1948

  • Stone, Marshall H.
  • Mathematics Magazine, Vol. 21, Issue 5
  • DOI: 10.2307/3029337

Degenerate Systems and Mass Singularities
journal, March 1964


Toward multi-differential cross sections: measuring two angularities on a single jet
journal, September 2014

  • Larkoski, Andrew J.; Moult, Ian; Neill, Duff
  • Journal of High Energy Physics, Vol. 2014, Issue 9
  • DOI: 10.1007/JHEP09(2014)046

Regression shrinkage and selection via the lasso: a retrospective: Regression Shrinkage and Selection via the Lasso
journal, April 2011


Systematics of quark/gluon tagging
journal, July 2017

  • Gras, Philippe; Höche, Stefan; Kar, Deepak
  • Journal of High Energy Physics, Vol. 2017, Issue 7
  • DOI: 10.1007/JHEP07(2017)091

Identifying boosted objects with N-subjettiness
journal, March 2011


Jets and quantum field theory
journal, August 1996


Precision Jet Substructure from Boosted Event Shapes
journal, August 2012


A study of jet mass distributions with grooming
journal, July 2017

  • Marzani, Simone; Schunk, Lais; Soyez, Gregory
  • Journal of High Energy Physics, Vol. 2017, Issue 7
  • DOI: 10.1007/JHEP07(2017)132

N Jettiness: An Inclusive Event Shape to Veto Jets
journal, August 2010


Quark and gluon jet substructure
journal, April 2013

  • Gallicchio, Jason; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2013, Issue 4
  • DOI: 10.1007/JHEP04(2013)090

Sudakov safety in perturbative QCD
journal, June 2015


Strategies to identify boosted tops
journal, July 2008


Generalized fragmentation functions for fractal jet observables
journal, June 2017

  • Elder, Benjamin T.; Procura, Massimiliano; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2017, Issue 6
  • DOI: 10.1007/JHEP06(2017)085

Analytic boosted boson discrimination
journal, May 2016

  • Larkoski, Andrew J.; Moult, Ian; Neill, Duff
  • Journal of High Energy Physics, Vol. 2016, Issue 5
  • DOI: 10.1007/JHEP05(2016)117

Dispelling the <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mi>N</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> myth for the <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi>k</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math> jet-finder
journal, September 2006


Substructure of high- p T jets at the LHC
journal, April 2009


Energy Correlations in Electron-Positron Annihilation: Testing Quantum Chromodynamics
journal, December 1978


Energy correlation functions for jet substructure
journal, June 2013

  • Larkoski, Andrew J.; Salam, Gavin P.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2013, Issue 6
  • DOI: 10.1007/JHEP06(2013)108

Classification without labels: learning from mixed samples in high energy physics
journal, October 2017

  • Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2017, Issue 10
  • DOI: 10.1007/JHEP10(2017)174

New angles on energy correlation functions
journal, December 2016

  • Moult, Ian; Necib, Lina; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2016, Issue 12
  • DOI: 10.1007/JHEP12(2016)153

Pileup Mitigation with Machine Learning (PUMML)
journal, December 2017

  • Komiske, Patrick T.; Metodiev, Eric M.; Nachman, Benjamin
  • Journal of High Energy Physics, Vol. 2017, Issue 12
  • DOI: 10.1007/JHEP12(2017)051

Jet-images — deep learning edition
journal, July 2016

  • de Oliveira, Luke; Kagan, Michael; Mackey, Lester
  • Journal of High Energy Physics, Vol. 2016, Issue 7
  • DOI: 10.1007/JHEP07(2016)069

Calculating the charge of a jet
journal, November 2012


Factorization for groomed jet substructure beyond the next-to-leading logarithm
journal, July 2016

  • Frye, Christopher; Larkoski, Andrew J.; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2016, Issue 7
  • DOI: 10.1007/JHEP07(2016)064

Calculating Track-Based Observables for the LHC
journal, September 2013


Weakly supervised classification in high energy physics
journal, May 2017

  • Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)145

Searches for new particles using cone and cluster jet algorithms: a comparative study
journal, March 1994

  • Seymour, Michael H.
  • Zeitschrift für Physik C Particles and Fields, Vol. 62, Issue 1
  • DOI: 10.1007/BF01559532

Factorization of e + e event shape distributions with hadronic final states in soft collinear effective theory
journal, August 2008


Jet shapes with the broadening axis
journal, April 2014

  • Larkoski, Andrew J.; Neill, Duff; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2014, Issue 4
  • DOI: 10.1007/JHEP04(2014)017

Handbook of perturbative QCD
journal, January 1995


Determination of many-electron basis functions for a quantum Hall ground state using Schur polynomials
journal, March 2018


Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
conference, December 2015

  • He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing
  • 2015 IEEE International Conference on Computer Vision (ICCV)
  • DOI: 10.1109/ICCV.2015.123

The on-line encyclopedia of integer sequences
journal, October 2018

  • Sloane, Neil J. A.
  • Notices of the American Mathematical Society, Vol. 65, Issue 09
  • DOI: 10.1090/noti1734

Measurement of colour flow with the jet pull angle in t t ¯ events using the ATLAS detector at s = 8   TeV
journal, November 2015


Searching for exotic particles in high-energy physics with deep learning
journal, July 2014

  • Baldi, P.; Sadowski, P.; Whiteson, D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5308

Quark and Gluon Tagging at the LHC
journal, October 2011


Search for high-mass Z γ resonances in proton–proton collisions at s = 8 and 13 TeV using jet substructure techniques
journal, September 2017


Parton shower uncertainties in jet substructure analyses with deep neural networks
journal, January 2017


Jet shapes and jet algorithms in SCET
journal, November 2010

  • Ellis, Stephen D.; Vermilion, Christopher K.; Walsh, Jonathan R.
  • Journal of High Energy Physics, Vol. 2010, Issue 11
  • DOI: 10.1007/JHEP11(2010)101

The anti- k t jet clustering algorithm
journal, April 2008


Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair
text, January 2018


From correlation functions to event shapes
journal, July 2014


Measurement of jet charge in dijet events from s = 8 TeV p p collisions with the ATLAS detector
journal, March 2016


Correlation functions of local composite operators from generalized unitarity
journal, March 2013

  • Engelund, Oluf Tang; Roiban, Radu
  • Journal of High Energy Physics, Vol. 2013, Issue 3
  • DOI: 10.1007/JHEP03(2013)172

The use of Multiple Measurements in Taxonomic Problems
journal, September 1936


Jet substructure classification in high-energy physics with deep neural networks
journal, May 2016


Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair
text, January 2018

  • Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2018-01823

Power counting to better jet observables
journal, December 2014

  • Larkoski, Andrew J.; Moult, Ian; Neill, Duff
  • Journal of High Energy Physics, Vol. 2014, Issue 12
  • DOI: 10.1007/JHEP12(2014)009

Boosted objects: a probe of beyond the standard model physics
journal, June 2011


Deep-learning top taggers or the end of QCD?
journal, May 2017

  • Kasieczka, Gregor; Plehn, Tilman; Russell, Michael
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)006

Mass Singularities of Feynman Amplitudes
journal, July 1962

  • Kinoshita, Toichiro
  • Journal of Mathematical Physics, Vol. 3, Issue 4
  • DOI: 10.1063/1.1724268

Multivariate discrimination and the Higgs+W/Z search
journal, April 2011

  • Gallicchio, Jason; Huth, John; Kagan, Michael
  • Journal of High Energy Physics, Vol. 2011, Issue 4
  • DOI: 10.1007/JHEP04(2011)069

Event shapes in <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math> super-Yang–Mills theory
journal, July 2014


A generic anti-QCD jet tagger
journal, November 2017

  • Aguilar-Saavedra, J. A.; Collins, Jack; Mishra, Rashmish K.
  • Journal of High Energy Physics, Vol. 2017, Issue 11
  • DOI: 10.1007/JHEP11(2017)163

Power corrections and nonlocal operators
conference, January 1997

  • Korchemsky, Gregory P.; Oderda, Gianluca; Sterman, George
  • The 5th international workshop on deep inelastic scattering and QCD, AIP Conference Proceedings
  • DOI: 10.1063/1.53732

Measuring Multijet Structure of Hadronic Energy Flow or, What is a jet?
journal, December 1997


Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair
journal, February 2018


Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012
journal, March 2014


Reduced coordinates on the configuration space of three and four atoms
journal, July 1992


Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches
journal, May 2010

  • Ellis, Stephen D.; Vermilion, Christopher K.; Walsh, Jonathan R.
  • Physical Review D, Vol. 81, Issue 9
  • DOI: 10.1103/PhysRevD.81.094023

Jet flavor classification in high-energy physics with deep neural networks
journal, December 2016


On conformal field theories with extremal $ \frac{a}{c} $ values
journal, April 2014


Energy flow in QCD and event shape functions
journal, August 2001


Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters
journal, January 2018


Conformal collider physics: energy and charge correlations
journal, May 2008


Jet trimming
journal, February 2010

  • Krohn, David; Thaler, Jesse; Wang, Lian-Tao
  • Journal of High Energy Physics, Vol. 2010, Issue 2
  • DOI: 10.1007/JHEP02(2010)084

Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?
journal, January 2015


Exploiting Causal Independence in Bayesian Network Inference
journal, August 1996

  • Zhang, N. L.; Poole, D.
  • Journal of Artificial Intelligence Research, Vol. 5
  • DOI: 10.1613/jair.305

Gaining (mutual) information about quark/gluon discrimination
journal, November 2014

  • Larkoski, Andrew J.; Thaler, Jesse; Waalewijn, Wouter J.
  • Journal of High Energy Physics, Vol. 2014, Issue 11
  • DOI: 10.1007/JHEP11(2014)129

Theano: A CPU and GPU Math Compiler in Python
conference, January 2010


Calculating Track-Based Observables for the LHC
text, January 2013

  • Chang, Hsi-Ming; Waalewijn, Wouter J.; Procura, Massimiliano
  • American Physical Society
  • DOI: 10.7892/boris.42560

Jet Substructure as a New Higgs-Search Channel at the Large Hadron Collider
journal, June 2008


Momentum flow correlations from event shapes: Factorized soft gluons and soft-collinear effective theory
journal, January 2007


Techniques for improved heavy particle searches with jet substructure
journal, September 2009

  • Ellis, Stephen D.; Vermilion, Christopher K.; Walsh, Jonathan R.
  • Physical Review D, Vol. 80, Issue 5
  • DOI: 10.1103/PhysRevD.80.051501

Soft drop
journal, May 2014

  • Larkoski, Andrew J.; Marzani, Simone; Soyez, Gregory
  • Journal of High Energy Physics, Vol. 2014, Issue 5
  • DOI: 10.1007/JHEP05(2014)146

Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks
journal, May 2012


A brief introduction to PYTHIA 8.1
journal, June 2008

  • Sjöstrand, Torbjörn; Mrenna, Stephen; Skands, Peter
  • Computer Physics Communications, Vol. 178, Issue 11
  • DOI: 10.1016/j.cpc.2008.01.036

Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at $$\sqrt{s} = 8$$ s = 8  TeV
journal, March 2016


Enhanced Higgs Boson to τ + τ Search with Deep Learning
journal, March 2015


The Generalized Weierstrass Approximation Theorem
journal, March 1948


Event shape–energy flow correlations
journal, July 2003


Improved jet substructure methods: Y-splitter and variants with grooming
journal, December 2016

  • Dasgupta, Mrinal; Powling, Alexander; Schunk, Lais
  • Journal of High Energy Physics, Vol. 2016, Issue 12
  • DOI: 10.1007/JHEP12(2016)079

XCone: N-jettiness as an exclusive cone jet algorithm
journal, November 2015

  • Stewart, Iain W.; Tackmann, Frank J.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2015, Issue 11
  • DOI: 10.1007/JHEP11(2015)072

WW scattering at the CERN LHC
journal, May 2002


Resummation of double-differential cross sections and fully-unintegrated parton distribution functions
journal, February 2015

  • Procura, Massimiliano; Waalewijn, Wouter J.; Zeune, Lisa
  • Journal of High Energy Physics, Vol. 2015, Issue 2
  • DOI: 10.1007/JHEP02(2015)117

Jet-images: computer vision inspired techniques for jet tagging
journal, February 2015

  • Cogan, Josh; Kagan, Michael; Strauss, Emanuel
  • Journal of High Energy Physics, Vol. 2015, Issue 2
  • DOI: 10.1007/JHEP02(2015)118

Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
journal, September 2017

  • de Oliveira, Luke; Paganini, Michela; Nachman, Benjamin
  • Computing and Software for Big Science, Vol. 1, Issue 1
  • DOI: 10.1007/s41781-017-0004-6

An introduction to PYTHIA 8.2
journal, June 2015

  • Sjöstrand, Torbjörn; Ask, Stefan; Christiansen, Jesper R.
  • Computer Physics Communications, Vol. 191
  • DOI: 10.1016/j.cpc.2015.01.024

Playing tag with ANN: boosted top identification with pattern recognition
journal, July 2015

  • Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu
  • Journal of High Energy Physics, Vol. 2015, Issue 7
  • DOI: 10.1007/JHEP07(2015)086

Energy correlations in electron-positron annihilation in quantum chromodynamics: Asymptotically free perturbation theory
journal, April 1979

  • Basham, C. Louis; Brown, Lowell S.; Ellis, Stephen D.
  • Physical Review D, Vol. 19, Issue 7
  • DOI: 10.1103/PhysRevD.19.2018

Jet substructure with analytical methods
journal, November 2013


Towards an understanding of jet substructure
journal, September 2013

  • Dasgupta, Mrinal; Fregoso, Alessandro; Marzani, Simone
  • Journal of High Energy Physics, Vol. 2013, Issue 9
  • DOI: 10.1007/JHEP09(2013)029

Factorization and resummation for groomed multi-prong jet shapes
journal, February 2018

  • Larkoski, Andrew J.; Moult, Ian; Neill, Duff
  • Journal of High Energy Physics, Vol. 2018, Issue 2
  • DOI: 10.1007/JHEP02(2018)144

Humoral signatures of protective and pathological SARS-CoV-2 infection in children
journal, February 2021


Reconstructing sparticle mass spectra using hadronic decays
journal, May 2007

  • Butterworth, Jonathan M.; Ellis, John R.; Raklev, Are R.
  • Journal of High Energy Physics, Vol. 2007, Issue 05
  • DOI: 10.1088/1126-6708/2007/05/033

Boosted Top Quarks, Top Pair Resonances, and Top Partner Searches at the LHC
journal, January 2013


Maximizing boosted top identification by minimizing N-subjettiness
journal, February 2012


PYTHIA 6.4 physics and manual
journal, May 2006


On power corrections to the event shape distributions in QCD
journal, October 2000


Deep-learning top taggers or the end of QCD
text, January 2017


The anti-k_t jet clustering algorithm
text, January 2008


Strategies to Identify Boosted Tops
text, January 2008


Substructure of high-p_T Jets at the LHC
text, January 2008


Techniques for improved heavy particle searches with jet substructure
text, January 2009


Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches
text, January 2009


Jet Shapes and Jet Algorithms in SCET
text, January 2010


Seeing in Color: Jet Superstructure
text, January 2010


Quark and Gluon Tagging at the LHC
text, January 2011


Correlation functions of local composite operators from generalized unitarity
preprint, January 2012


Power Corrections to Event Shapes with Mass-Dependent Operators
text, January 2012


Energy Correlation Functions for Jet Substructure
text, January 2013


Unsafe but Calculable: Ratios of Angularities in Perturbative QCD
text, January 2013


Searching for Exotic Particles in High-Energy Physics with Deep Learning
text, January 2014


Jet-Images: Computer Vision Inspired Techniques for Jet Tagging
text, January 2014


Sudakov Safety in Perturbative QCD
text, January 2015


Jet Substructure Classification in High-Energy Physics with Deep Neural Networks
text, January 2016


Improved jet substructure methods: Y-splitter and variants with grooming
text, January 2016


Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
text, January 2017


Deep-learning Top Taggers or The End of QCD?
text, January 2017


Weakly Supervised Classification in High Energy Physics
text, January 2017


Operator bases, $S$-matrices, and their partition functions
text, January 2017


Factorization and Resummation for Groomed Multi-Prong Jet Shapes
text, January 2017


Exploiting Causal Independence in Bayesian Network Inference
text, January 1996


Hadron masses and power corrections to event shapes
text, January 2001


Dispelling the N^3 myth for the Kt jet-finder
text, January 2005


Jets and Quantum Field Theory
text, January 1995


Power corrections to event shapes and factorization
text, January 1999


Works referencing / citing this record:

Boosting H → b b ¯ $$ H\to b\overline{b} $$ with machine learning
journal, October 2018

  • Lin, Joshua; Freytsis, Marat; Moult, Ian
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/jhep10(2018)101

Spectral analysis of jet substructure with neural networks: boosted Higgs case
journal, October 2018

  • Lim, Sung Hak; Nojiri, Mihoko M.
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/jhep10(2018)181

Jets with electrons from boosted top quarks
journal, January 2020

  • Chatterjee, Suman; Godbole, Rohini; Roy, Tuhin S.
  • Journal of High Energy Physics, Vol. 2020, Issue 1
  • DOI: 10.1007/jhep01(2020)170

A theory of quark vs. gluon discrimination
journal, October 2019

  • Larkoski, Andrew J.; Metodiev, Eric M.
  • Journal of High Energy Physics, Vol. 2019, Issue 10
  • DOI: 10.1007/jhep10(2019)014

QCD or what?
journal, January 2019


Metric Space of Collider Events
journal, July 2019


CapsNets continuing the convolutional quest
journal, January 2020


Entropy of a Jet
journal, September 2019


Collinear limit of the energy-energy correlator
journal, July 2019


Energy flow networks: deep sets for particle jets
journal, January 2019

  • Komiske, Patrick T.; Metodiev, Eric M.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/jhep01(2019)121

The Lund jet plane
journal, December 2018

  • Dreyer, Frédéric A.; Salam, Gavin P.; Soyez, Grégory
  • Journal of High Energy Physics, Vol. 2018, Issue 12
  • DOI: 10.1007/jhep12(2018)064

Learning to classify from impure samples with high-dimensional data
journal, July 2018


Automating the construction of jet observables with machine learning
journal, November 2019


The Machine Learning landscape of top taggers
journal, January 2019


Deep-learning jets with uncertainties and more
journal, January 2020


Reports of my demise are greatly exaggerated: $N$-subjettiness taggers take on jet images
journal, January 2019


Machine learning and the physical sciences
journal, December 2019


Lund jet images from generative and cycle-consistent adversarial networks
journal, November 2019


An operational definition of quark and gluon jets
journal, November 2018

  • Komiske, Patrick T.; Metodiev, Eric M.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2018, Issue 11
  • DOI: 10.1007/jhep11(2018)059

QCD-aware recursive neural networks for jet physics
journal, January 2019

  • Louppe, Gilles; Cho, Kyunghyun; Becot, Cyril
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/jhep01(2019)057

Interpretable deep learning for two-prong jet classification with jet spectra
journal, July 2019

  • Chakraborty, Amit; Lim, Sung Hak; Nojiri, Mihoko M.
  • Journal of High Energy Physics, Vol. 2019, Issue 7
  • DOI: 10.1007/jhep07(2019)135

Automating the construction of jet observables with machine learning
text, January 2019


Aspects of track-assisted mass
journal, March 2019

  • Elder, Benjamin T.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2019, Issue 3
  • DOI: 10.1007/jhep03(2019)104

The Machine Learning landscape of top taggers
text, January 2019


Learning to Classify from Impure Samples with High-Dimensional Data
text, January 2018


Reports of My Demise Are Greatly Exaggerated: $N$-subjettiness Taggers Take On Jet Images
text, January 2018


Energy Flow Networks: Deep Sets for Particle Jets
text, January 2018


Automating the Construction of Jet Observables with Machine Learning
text, January 2019


Interpretable Deep Learning for Two-Prong Jet Classification with Jet Spectra
text, January 2019


CapsNets Continuing the Convolutional Quest
text, January 2019


Lund jet images from generative and cycle-consistent adversarial networks
text, January 2019