skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A test of the hierarchical model of litter decomposition

Abstract

Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle–climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO 2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the con- trolling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France—and capturing both within and among site variation in putative controls—we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [2]; ORCiD logo [4];  [5];  [6]; ORCiD logo [7];  [8]; ORCiD logo [9];  [2];  [10];  [11];  [5];  [12];  [13]; ORCiD logo [14];  [15];  [16]
  1. Yale Univ., New Haven, CT (United States); Netherlands Inst. of Ecology, Wageningen, (Netherlands)
  2. Netherlands Inst. of Ecology, Wageningen, (Netherlands)
  3. Univ. of Rennes 1, Rennes Cedex (France)
  4. Univ. of Vermont, Burlington, VT (United States); Univ. of Copenhagen, Copenhagen (Denmark)
  5. Vrije Univ., Amsterdam (Netherlands)
  6. Federal Inst. of Technology, Zurich (Switzerland)
  7. Univ. of Manchester, Manchester (United Kingdom)
  8. Univ. Montpellier, Montpellier (France)
  9. Umeå Univ., Umeå (Sweden)
  10. Yale Univ., New Haven, CT (United States)
  11. Univ. of Vermont, Burlington, VT (United States); Copenhagen Univ., Copenhagen (Denmark)
  12. Swedish Univ. of Agricultural Sciences, Uppsala, (Sweden).
  13. Umeå Univ., Umeå (Sweden); Nanyang Technological Univ., Singapore (Singapore)
  14. National Center for Atmospheric Research, Boulder, CO (United States)
  15. The Nature Conservancy, Arlington, VA (United States)
  16. Netherlands Inst. of Ecology, Wageningen, (Netherlands); Wageningen Univ., Wageningen (Netherlands)
Publication Date:
Research Org.:
Univ. of Tennessee, Knoxville, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1501394
Grant/Contract Number:  
SC0010562
Resource Type:
Accepted Manuscript
Journal Name:
Nature Ecology and Evolution
Additional Journal Information:
Journal Volume: 1; Journal Issue: 12; Journal ID: ISSN 2397-334X
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Bradford, Mark A., Veen, G. F., Bonis, Anne, Bradford, Ella M., Classen, Aimee T., Cornelissen, J. Hans C., Crowther, Thomas. W., De Long, Jonathan R., Freschet, Gregoire T., Kardol, Paul, Manrubia-Freixa, Marta, Maynard, Daniel S., Newman, Gregory S., Logtestijn, Richard S. P., Viketoft, Maria, Wardle, David A., Wieder, William R., Wood, Stephen A., and van der Putten, Wim H. A test of the hierarchical model of litter decomposition. United States: N. p., 2017. Web. doi:10.1038/s41559-017-0367-4.
Bradford, Mark A., Veen, G. F., Bonis, Anne, Bradford, Ella M., Classen, Aimee T., Cornelissen, J. Hans C., Crowther, Thomas. W., De Long, Jonathan R., Freschet, Gregoire T., Kardol, Paul, Manrubia-Freixa, Marta, Maynard, Daniel S., Newman, Gregory S., Logtestijn, Richard S. P., Viketoft, Maria, Wardle, David A., Wieder, William R., Wood, Stephen A., & van der Putten, Wim H. A test of the hierarchical model of litter decomposition. United States. doi:10.1038/s41559-017-0367-4.
Bradford, Mark A., Veen, G. F., Bonis, Anne, Bradford, Ella M., Classen, Aimee T., Cornelissen, J. Hans C., Crowther, Thomas. W., De Long, Jonathan R., Freschet, Gregoire T., Kardol, Paul, Manrubia-Freixa, Marta, Maynard, Daniel S., Newman, Gregory S., Logtestijn, Richard S. P., Viketoft, Maria, Wardle, David A., Wieder, William R., Wood, Stephen A., and van der Putten, Wim H. Mon . "A test of the hierarchical model of litter decomposition". United States. doi:10.1038/s41559-017-0367-4. https://www.osti.gov/servlets/purl/1501394.
@article{osti_1501394,
title = {A test of the hierarchical model of litter decomposition},
author = {Bradford, Mark A. and Veen, G. F. and Bonis, Anne and Bradford, Ella M. and Classen, Aimee T. and Cornelissen, J. Hans C. and Crowther, Thomas. W. and De Long, Jonathan R. and Freschet, Gregoire T. and Kardol, Paul and Manrubia-Freixa, Marta and Maynard, Daniel S. and Newman, Gregory S. and Logtestijn, Richard S. P. and Viketoft, Maria and Wardle, David A. and Wieder, William R. and Wood, Stephen A. and van der Putten, Wim H.},
abstractNote = {Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle–climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the con- trolling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France—and capturing both within and among site variation in putative controls—we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.},
doi = {10.1038/s41559-017-0367-4},
journal = {Nature Ecology and Evolution},
number = 12,
volume = 1,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Influence of Drying-Rewetting Frequency on Soil Bacterial Community Structure
journal, January 2003


Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs
journal, January 2014


Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4)
journal, October 2012

  • Bonan, Gordon B.; Hartman, Melannie D.; Parton, William J.
  • Global Change Biology, Vol. 19, Issue 3
  • DOI: 10.1111/gcb.12031

A plant economics spectrum of litter decomposability
journal, September 2011


Rich State, Poor State, Red State, Blue State: What's the Matter with Connecticut?
journal, January 2007

  • Gelman, Andrew; Gelman, Andrew
  • Quarterly Journal of Political Science, Vol. 2, Issue 4
  • DOI: 10.1561/100.00006026

Microbial abundance and composition influence litter decomposition response to environmental change
journal, March 2013

  • Allison, Steven D.; Lu, Ying; Weihe, Claudia
  • Ecology, Vol. 94, Issue 3
  • DOI: 10.1890/12-1243.1

Mixed-effects modeling with crossed random effects for subjects and items
journal, November 2008

  • Baayen, R. H.; Davidson, D. J.; Bates, D. M.
  • Journal of Memory and Language, Vol. 59, Issue 4
  • DOI: 10.1016/j.jml.2007.12.005

Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes
journal, June 2013

  • García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens
  • Ecology Letters, Vol. 16, Issue 8
  • DOI: 10.1111/ele.12137

A general and simple method for obtaining R 2 from generalized linear mixed-effects models
journal, December 2012


Cross-biome metagenomic analyses of soil microbial communities and their functional attributes
journal, December 2012

  • Fierer, N.; Leff, J. W.; Adams, B. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 52
  • DOI: 10.1073/pnas.1215210110

Biomass or growth? How to measure soil food webs to understand structure and function
journal, November 2016


Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient
journal, June 2012


Litter Quality and the Temperature Sensitivity of Decomposition
journal, February 2005

  • Fierer, Noah; Craine, Joseph M.; McLauchlan, Kendra
  • Ecology, Vol. 86, Issue 2
  • DOI: 10.1890/04-1254

Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions
journal, November 2014


Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2
journal, November 2014

  • Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher
  • Nature Climate Change, Vol. 4, Issue 12
  • DOI: 10.1038/nclimate2436

A physiological method for the quantitative measurement of microbial biomass in soils
journal, January 1978


Commentary: Individual, ecological and multilevel fallacies
journal, January 2009

  • Oakes, J. M.
  • International Journal of Epidemiology, Vol. 38, Issue 2
  • DOI: 10.1093/ije/dyn356

Understanding the dominant controls on litter decomposition
journal, November 2015

  • Bradford, Mark A.; Berg, Björn; Maynard, Daniel S.
  • Journal of Ecology, Vol. 104, Issue 1
  • DOI: 10.1111/1365-2745.12507

Native predators reduce harvest of reindeer by Sámi pastoralists
journal, July 2012

  • Hobbs, N. Thompson; Andrén, Henrik; Persson, Jens
  • Ecological Applications, Vol. 22, Issue 5
  • DOI: 10.1890/11-1309.1

The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture
journal, December 1992


Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality
journal, September 1993

  • Berg, B.; Berg, M. P.; Bottner, P.
  • Biogeochemistry, Vol. 20, Issue 3
  • DOI: 10.1007/BF00000785

Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
journal, October 2008


Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling
journal, April 2015

  • Buchkowski, Robert W.; Schmitz, Oswald J.; Bradford, Mark A.
  • Ecology, Vol. 96, Issue 4
  • DOI: 10.1890/14-1327.1

Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward
journal, August 2011


Disturbance Decouples Biogeochemical Cycles Across Forests of the Southeastern US
journal, September 2015


Consequences of biodiversity loss for litter decomposition across biomes
journal, May 2014

  • Handa, I. Tanya; Aerts, Rien; Berendse, Frank
  • Nature, Vol. 509, Issue 7499
  • DOI: 10.1038/nature13247

Generalized linear mixed models: a practical guide for ecology and evolution
journal, March 2009

  • Bolker, Benjamin M.; Brooks, Mollie E.; Clark, Connie J.
  • Trends in Ecology & Evolution, Vol. 24, Issue 3
  • DOI: 10.1016/j.tree.2008.10.008

Environmental stress response limits microbial necromass contributions to soil organic carbon
journal, June 2015


Climate change alters ecological strategies of soil bacteria
journal, November 2013

  • Evans, Sarah E.; Wallenstein, Matthew D.
  • Ecology Letters, Vol. 17, Issue 2
  • DOI: 10.1111/ele.12206

Biotic interactions mediate soil microbial feedbacks to climate change
journal, May 2015

  • Crowther, Thomas W.; Thomas, Stephen M.; Maynard, Daniel S.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 22
  • DOI: 10.1073/pnas.1502956112

Microbiota, fauna, and mesh size interactions in litter decomposition
journal, November 2002


Ecological inference
journal, September 1999


Climate fails to predict wood decomposition at regional scales
journal, June 2014

  • Bradford, Mark A.; Warren II, Robert J.; Baldrian, Petr
  • Nature Climate Change, Vol. 4, Issue 7
  • DOI: 10.1038/nclimate2251

Ecological Correlations and the Behavior of Individuals
journal, June 1950

  • Robinson, W. S.
  • American Sociological Review, Vol. 15, Issue 3
  • DOI: 10.2307/2087176

Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?
journal, October 2005

  • Cornelissen, J. H. C.; Quested, H. M.; van Logtestijn, R. S. P.
  • Oecologia, Vol. 147, Issue 2
  • DOI: 10.1007/s00442-005-0269-z

Climate history shapes contemporary leaf litter decomposition
journal, January 2015

  • Strickland, Michael S.; Keiser, Ashley D.; Bradford, Mark A.
  • Biogeochemistry, Vol. 122, Issue 2-3
  • DOI: 10.1007/s10533-014-0065-0

Global soil carbon projections are improved by modelling microbial processes
journal, July 2013

  • Wieder, William R.; Bonan, Gordon B.; Allison, Steven D.
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1951

The temperature response of soil microbial efficiency and its feedback to climate
journal, January 2013

  • Frey, Serita D.; Lee, Juhwan; Melillo, Jerry M.
  • Nature Climate Change, Vol. 3, Issue 4
  • DOI: 10.1038/nclimate1796

Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison
journal, May 2009


Long-Term Forage Production of North American Shortgrass Steppe
journal, November 1992

  • Lauenroth, W. K.; Sala, O. E.
  • Ecological Applications, Vol. 2, Issue 4
  • DOI: 10.2307/1941874

Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time
journal, October 2003


Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment
journal, September 2009


Scaling regression inputs by dividing by two standard deviations
journal, January 2008

  • Gelman, Andrew
  • Statistics in Medicine, Vol. 27, Issue 15
  • DOI: 10.1002/sim.3107

Macroclimate and Lignin Control of Litter Decomposition Rates
journal, May 1978


Soil-carbon response to warming dependent on microbial physiology
journal, April 2010

  • Allison, Steven D.; Wallenstein, Matthew D.; Bradford, Mark A.
  • Nature Geoscience, Vol. 3, Issue 5
  • DOI: 10.1038/ngeo846

Litter decomposition rates in Canadian forests
journal, January 1999


Applying population and community ecology theory to advance understanding of belowground biogeochemistry
journal, January 2017

  • Buchkowski, Robert W.; Bradford, Mark A.; Grandy, Andrew Stuart
  • Ecology Letters, Vol. 20, Issue 2
  • DOI: 10.1111/ele.12712

Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture
journal, February 2016

  • Averill, Colin; Waring, Bonnie G.; Hawkes, Christine V.
  • Global Change Biology, Vol. 22, Issue 5
  • DOI: 10.1111/gcb.13219

    Works referencing / citing this record:

    Long-Term Forage Production of North American Shortgrass Steppe
    journal, November 1992

    • Lauenroth, W. K.; Sala, O. E.
    • Ecological Applications, Vol. 2, Issue 4
    • DOI: 10.2307/1941874

    Variation in home-field advantage and ability in leaf litter decomposition across successional gradients
    journal, April 2018

    • Veen, G. F. Ciska; Keiser, Ashley D.; van der Putten, Wim H.
    • Functional Ecology, Vol. 32, Issue 6
    • DOI: 10.1111/1365-2435.13107

    Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2
    journal, November 2014

    • Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher
    • Nature Climate Change, Vol. 4, Issue 12
    • DOI: 10.1038/nclimate2436

    Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions
    journal, November 2014


    Litter decomposition rates in Canadian forests
    journal, January 1999


    Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture
    journal, February 2016

    • Averill, Colin; Waring, Bonnie G.; Hawkes, Christine V.
    • Global Change Biology, Vol. 22, Issue 5
    • DOI: 10.1111/gcb.13219

    Climate change alters ecological strategies of soil bacteria
    journal, November 2013

    • Evans, Sarah E.; Wallenstein, Matthew D.
    • Ecology Letters, Vol. 17, Issue 2
    • DOI: 10.1111/ele.12206

    Altered leaf litter quality exacerbates the negative impact of climate change on decomposition
    journal, April 2019

    • Prieto, Iván; Almagro, María; Bastida, Felipe
    • Journal of Ecology, Vol. 107, Issue 5
    • DOI: 10.1111/1365-2745.13168

    Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward
    journal, August 2011


    Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling
    journal, April 2015

    • Buchkowski, Robert W.; Schmitz, Oswald J.; Bradford, Mark A.
    • Ecology, Vol. 96, Issue 4
    • DOI: 10.1890/14-1327.1

    Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
    journal, October 2008


    Consequences of biodiversity loss for litter decomposition across biomes
    journal, May 2014

    • Handa, I. Tanya; Aerts, Rien; Berendse, Frank
    • Nature, Vol. 509, Issue 7499
    • DOI: 10.1038/nature13247

    Disturbance Decouples Biogeochemical Cycles Across Forests of the Southeastern US
    journal, September 2015


    Environmental stress response limits microbial necromass contributions to soil organic carbon
    journal, June 2015


    A general and simple method for obtaining R 2 from generalized linear mixed-effects models
    journal, December 2012


    A physiological method for the quantitative measurement of microbial biomass in soils
    journal, January 1978


    Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness
    journal, March 2019

    • See, Craig R.; Luke McCormack, Michael; Hobbie, Sarah E.
    • Ecology Letters, Vol. 22, Issue 6
    • DOI: 10.1111/ele.13248

    Applying population and community ecology theory to advance understanding of belowground biogeochemistry
    journal, January 2017

    • Buchkowski, Robert W.; Bradford, Mark A.; Grandy, Andrew Stuart
    • Ecology Letters, Vol. 20, Issue 2
    • DOI: 10.1111/ele.12712

    Biotic interactions mediate soil microbial feedbacks to climate change
    journal, May 2015

    • Crowther, Thomas W.; Thomas, Stephen M.; Maynard, Daniel S.
    • Proceedings of the National Academy of Sciences, Vol. 112, Issue 22
    • DOI: 10.1073/pnas.1502956112

    Soil-carbon response to warming dependent on microbial physiology
    journal, April 2010

    • Allison, Steven D.; Wallenstein, Matthew D.; Bradford, Mark A.
    • Nature Geoscience, Vol. 3, Issue 5
    • DOI: 10.1038/ngeo846

    Macroclimate and Lignin Control of Litter Decomposition Rates
    journal, May 1978


    Microbial abundance and composition influence litter decomposition response to environmental change
    journal, March 2013

    • Allison, Steven D.; Lu, Ying; Weihe, Claudia
    • Ecology, Vol. 94, Issue 3
    • DOI: 10.1890/12-1243.1

    Microbiota, fauna, and mesh size interactions in litter decomposition
    journal, November 2002


    Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation
    journal, January 2019

    • Bradford, Mark A.; McCulley, Rebecca L.; Crowther, Thomas. W.
    • Nature Ecology & Evolution, Vol. 3, Issue 2
    • DOI: 10.1038/s41559-018-0771-4

    Litter carbon and nutrient chemistry control the magnitude of soil priming effect
    journal, January 2019


    Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes
    journal, June 2013

    • García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens
    • Ecology Letters, Vol. 16, Issue 8
    • DOI: 10.1111/ele.12137

    Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment
    journal, September 2009


    Scaling regression inputs by dividing by two standard deviations
    journal, January 2008

    • Gelman, Andrew
    • Statistics in Medicine, Vol. 27, Issue 15
    • DOI: 10.1002/sim.3107

    Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison
    journal, May 2009


    Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs
    journal, January 2014


    Influence of Drying-Rewetting Frequency on Soil Bacterial Community Structure
    journal, January 2003


    Native predators reduce harvest of reindeer by Sámi pastoralists
    journal, July 2012

    • Hobbs, N. Thompson; Andrén, Henrik; Persson, Jens
    • Ecological Applications, Vol. 22, Issue 5
    • DOI: 10.1890/11-1309.1

    The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture
    journal, December 1992


    Larger plants promote a greater diversity of symbiotic nitrogen-fixing soil bacteria associated with an Australian endemic legume: XXXX
    journal, October 2018

    • Dinnage, Russell; Simonsen, Anna K.; Barrett, Luke G.
    • Journal of Ecology, Vol. 107, Issue 2
    • DOI: 10.1111/1365-2745.13083

    The temperature response of soil microbial efficiency and its feedback to climate
    journal, January 2013

    • Frey, Serita D.; Lee, Juhwan; Melillo, Jerry M.
    • Nature Climate Change, Vol. 3, Issue 4
    • DOI: 10.1038/nclimate1796

    Biomass or growth? How to measure soil food webs to understand structure and function
    journal, November 2016


    Global soil carbon projections are improved by modelling microbial processes
    journal, July 2013

    • Wieder, William R.; Bonan, Gordon B.; Allison, Steven D.
    • Nature Climate Change, Vol. 3, Issue 10
    • DOI: 10.1038/nclimate1951

    Cross-biome metagenomic analyses of soil microbial communities and their functional attributes
    journal, December 2012

    • Fierer, N.; Leff, J. W.; Adams, B. J.
    • Proceedings of the National Academy of Sciences, Vol. 109, Issue 52
    • DOI: 10.1073/pnas.1215210110

    Commentary: Individual, ecological and multilevel fallacies
    journal, January 2009

    • Oakes, J. M.
    • International Journal of Epidemiology, Vol. 38, Issue 2
    • DOI: 10.1093/ije/dyn356

    Understanding the dominant controls on litter decomposition
    journal, November 2015

    • Bradford, Mark A.; Berg, Björn; Maynard, Daniel S.
    • Journal of Ecology, Vol. 104, Issue 1
    • DOI: 10.1111/1365-2745.12507

    Climate fails to predict wood decomposition at regional scales
    journal, June 2014

    • Bradford, Mark A.; Warren II, Robert J.; Baldrian, Petr
    • Nature Climate Change, Vol. 4, Issue 7
    • DOI: 10.1038/nclimate2251

    A plant economics spectrum of litter decomposability
    journal, September 2011


    Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?
    journal, October 2005

    • Cornelissen, J. H. C.; Quested, H. M.; van Logtestijn, R. S. P.
    • Oecologia, Vol. 147, Issue 2
    • DOI: 10.1007/s00442-005-0269-z

    Generalized linear mixed models: a practical guide for ecology and evolution
    journal, March 2009

    • Bolker, Benjamin M.; Brooks, Mollie E.; Clark, Connie J.
    • Trends in Ecology & Evolution, Vol. 24, Issue 3
    • DOI: 10.1016/j.tree.2008.10.008

    Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient
    journal, June 2012


    Litter Quality and the Temperature Sensitivity of Decomposition
    journal, February 2005

    • Fierer, Noah; Craine, Joseph M.; McLauchlan, Kendra
    • Ecology, Vol. 86, Issue 2
    • DOI: 10.1890/04-1254

    Climate history shapes contemporary leaf litter decomposition
    journal, January 2015

    • Strickland, Michael S.; Keiser, Ashley D.; Bradford, Mark A.
    • Biogeochemistry, Vol. 122, Issue 2-3
    • DOI: 10.1007/s10533-014-0065-0

    Mixed-effects modeling with crossed random effects for subjects and items
    journal, November 2008

    • Baayen, R. H.; Davidson, D. J.; Bates, D. M.
    • Journal of Memory and Language, Vol. 59, Issue 4
    • DOI: 10.1016/j.jml.2007.12.005

    Ecological inference
    journal, September 1999


    Rich State, Poor State, Red State, Blue State: What's the Matter with Connecticut?
    journal, January 2007

    • Gelman, Andrew; Gelman, Andrew
    • Quarterly Journal of Political Science, Vol. 2, Issue 4
    • DOI: 10.1561/100.00006026

    Ecological Correlations and the Behavior of Individuals
    journal, June 1950

    • Robinson, W. S.
    • American Sociological Review, Vol. 15, Issue 3
    • DOI: 10.2307/2087176

    Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4)
    journal, October 2012

    • Bonan, Gordon B.; Hartman, Melannie D.; Parton, William J.
    • Global Change Biology, Vol. 19, Issue 3
    • DOI: 10.1111/gcb.12031