skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction

Abstract

Crystalline transition-metal antimonates (TMAs) such as NiSb 2 O x , CoSb 2 O x , and MnSb 2 O x are moderately active, stable catalysts for the electrochemical oxidation of chloride to chlorine under conditions relevant to the commercial chlor-alkali process.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Division of Chemistry and Chemical Engineering, 127-72, California Institute of Technology, Pasadena, USA
  2. Beckman Institute Molecular Materials Research Center, California Institute of Technology, Pasadena, USA
  3. Division of Chemistry and Chemical Engineering, 127-72, California Institute of Technology, Pasadena, USA, Beckman Institute Molecular Materials Research Center
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1500144
Grant/Contract Number:  
SC0004993
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Name: Energy & Environmental Science Journal Volume: 12 Journal Issue: 4; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Moreno-Hernandez, Ivan A., Brunschwig, Bruce S., and Lewis, Nathan S. Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. United Kingdom: N. p., 2019. Web. doi:10.1039/C8EE03676D.
Moreno-Hernandez, Ivan A., Brunschwig, Bruce S., & Lewis, Nathan S. Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. United Kingdom. doi:10.1039/C8EE03676D.
Moreno-Hernandez, Ivan A., Brunschwig, Bruce S., and Lewis, Nathan S. Wed . "Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction". United Kingdom. doi:10.1039/C8EE03676D.
@article{osti_1500144,
title = {Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction},
author = {Moreno-Hernandez, Ivan A. and Brunschwig, Bruce S. and Lewis, Nathan S.},
abstractNote = {Crystalline transition-metal antimonates (TMAs) such as NiSb 2 O x , CoSb 2 O x , and MnSb 2 O x are moderately active, stable catalysts for the electrochemical oxidation of chloride to chlorine under conditions relevant to the commercial chlor-alkali process.},
doi = {10.1039/C8EE03676D},
journal = {Energy & Environmental Science},
number = 4,
volume = 12,
place = {United Kingdom},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C8EE03676D

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

X-Ray Photoelectron Spectroscopic Studies on ZnS: MnF 2 Phosphors
journal, February 1976


Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

Controlling Selectivity in the Chlorine Evolution Reaction over RuO 2 -Based Catalysts
journal, August 2014

  • Exner, Kai S.; Anton, Josef; Jacob, Timo
  • Angewandte Chemie International Edition, Vol. 53, Issue 41
  • DOI: 10.1002/anie.201406112

The potential-pH diagram for the Ru−H2O−Cl− system at 25°C
journal, May 1990

  • Loučka, T.
  • Journal of Applied Electrochemistry, Vol. 20, Issue 3
  • DOI: 10.1007/BF01076067

Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution
journal, November 2014


Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution
journal, June 2013


On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti–Ru–Ir mixed metal oxide electrocatalysts
journal, January 2014

  • Zeradjanin, Aleksandar R.; Menzel, Nadine; Schuhmann, Wolfgang
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00896K

Dimensionally Stable Ru/Ir/TiO 2 -Anodes with Tailored Mesoporosity for Efficient Electrochemical Chlorine Evolution
journal, April 2013

  • Menzel, Nadine; Ortel, Erik; Mette, Katharina
  • ACS Catalysis, Vol. 3, Issue 6
  • DOI: 10.1021/cs4000238

Effects of storage time and temperature on the antimony and some trace element release from polyethylene terephthalate (PET) into the bottled drinking water
journal, November 2014

  • Molaee Aghaee, Ebrahim; Alimohammadi, Mahmood; Nabizadeh, Ramin
  • Journal of Environmental Health Science and Engineering, Vol. 12, Issue 1
  • DOI: 10.1186/s40201-014-0133-3

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes
journal, January 2006

  • Martínez-Huitle, Carlos A.; Ferro, Sergio
  • Chem. Soc. Rev., Vol. 35, Issue 12
  • DOI: 10.1039/B517632H

Morphology, Microstructure, and Electrocatalytic Properties of RuO[sub 2]-SnO[sub 2] Thin Films
journal, January 1999

  • Nanni, Luca
  • Journal of The Electrochemical Society, Vol. 146, Issue 1
  • DOI: 10.1149/1.1391590

Superaerophobic RuO 2 -Based Nanostructured Electrode for High-Performance Chlorine Evolution Reaction
journal, October 2016


X-ray photoelectron spectra of antimony oxides
journal, November 1989


Electrochemical chlorine evolution at rutile oxide (110) surfaces
journal, January 2010

  • Hansen, Heine A.; Man, Isabela C.; Studt, Felix
  • Phys. Chem. Chem. Phys., Vol. 12, Issue 1
  • DOI: 10.1039/B917459A

X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems
journal, April 2009

  • Biesinger, Mark C.; Payne, Brad P.; Lau, Leo W. M.
  • Surface and Interface Analysis, Vol. 41, Issue 4
  • DOI: 10.1002/sia.3026

Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H 2 SO 4
journal, January 2017

  • Moreno-Hernandez, Ivan A.; MacFarland, Clara A.; Read, Carlos G.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01486D

Sol–gel preparation of M-Sb oxides from Sb (OBu n ) 3 -M-acetate precursors with M = Mn, Co, Ni
journal, January 1993


Co 3 O 4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction
journal, January 2018

  • Zhu, Xianglin; Wang, Peng; Wang, Zeyan
  • Journal of Materials Chemistry A, Vol. 6, Issue 26
  • DOI: 10.1039/C8TA03689F

Electrocatalysis in the anodic evolution of oxygen and chlorine
journal, November 1984


Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates
journal, August 1999


Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
journal, January 2011

  • Biesinger, Mark C.; Payne, Brad P.; Grosvenor, Andrew P.
  • Applied Surface Science, Vol. 257, Issue 7, p. 2717-2730
  • DOI: 10.1016/j.apsusc.2010.10.051

Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes
journal, February 2016