skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids

Abstract

Unique colorimetric optical properties of nanomaterials can effectively influence the light absorption or emission of molecules. Here, we design plasmonic substrate for surface-enhanced Raman scattering (SERS) by inducing three-dimensional (3D) hot spots on the sensing surface. The 3D hot spots are formed by the self-assembly of plasmonic nanoparticles (NPs) on a 3D plasmonic nanocup array structure. This 3D hot spot formation on the periodic nanocup arrays achieves much higher SERS enhancement factor than the 2D NP arrays, which have been conventionally sought SERS substrates. We also utilize the colorimetric properties of the nanocup arrays for an additional degree of SERS enhancement. Colorimetry, achieved by tunable plasmon resonance wavelength by controlling dielectric property on the nanocup array surface, eases the modulation of the plasmonic resonance condition without modifying the nanostructure design. By continuously monitoring the shifts of the plasmon resonance condition and its effect on the light absorption and emission of the nearby molecules, we verify that larger SERS enhancement is achieved when the plasmon resonance wavelength is matched with the Raman excitation wavelength. In conclusion, the ease of plasmon resonance tuning of this nanocup array-nanoparticle hybrid structure allows versatile SERS enhancement for a variety of different Raman measurement conditions.

Authors:
 [1];  [1];  [1]
  1. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1500106
Grant/Contract Number:  
FG02-07ER46453; FG02-07ER46471
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Seo, Sujin, Chang, Te -Wei, and Liu, Gang Logan. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids. United States: N. p., 2018. Web. doi:10.1038/s41598-018-19256-7.
Seo, Sujin, Chang, Te -Wei, & Liu, Gang Logan. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids. United States. doi:10.1038/s41598-018-19256-7.
Seo, Sujin, Chang, Te -Wei, and Liu, Gang Logan. Wed . "3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids". United States. doi:10.1038/s41598-018-19256-7. https://www.osti.gov/servlets/purl/1500106.
@article{osti_1500106,
title = {3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids},
author = {Seo, Sujin and Chang, Te -Wei and Liu, Gang Logan},
abstractNote = {Unique colorimetric optical properties of nanomaterials can effectively influence the light absorption or emission of molecules. Here, we design plasmonic substrate for surface-enhanced Raman scattering (SERS) by inducing three-dimensional (3D) hot spots on the sensing surface. The 3D hot spots are formed by the self-assembly of plasmonic nanoparticles (NPs) on a 3D plasmonic nanocup array structure. This 3D hot spot formation on the periodic nanocup arrays achieves much higher SERS enhancement factor than the 2D NP arrays, which have been conventionally sought SERS substrates. We also utilize the colorimetric properties of the nanocup arrays for an additional degree of SERS enhancement. Colorimetry, achieved by tunable plasmon resonance wavelength by controlling dielectric property on the nanocup array surface, eases the modulation of the plasmonic resonance condition without modifying the nanostructure design. By continuously monitoring the shifts of the plasmon resonance condition and its effect on the light absorption and emission of the nearby molecules, we verify that larger SERS enhancement is achieved when the plasmon resonance wavelength is matched with the Raman excitation wavelength. In conclusion, the ease of plasmon resonance tuning of this nanocup array-nanoparticle hybrid structure allows versatile SERS enhancement for a variety of different Raman measurement conditions.},
doi = {10.1038/s41598-018-19256-7},
journal = {Scientific Reports},
number = 1,
volume = 8,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Absorbance Amplification Using Chromophore–Nanoplasmon Coupling for Ultrasensitive Protein Quantification
journal, September 2015


Different Plasmon Sensing Behavior of Silver and Gold Nanorods
journal, April 2013

  • Mahmoud, Mahmoud A.; El-Sayed, Mostafa A.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 9
  • DOI: 10.1021/jz4005015

Intracellular SERS Nanoprobes For Distinction Of Different Neuronal Cell Types
journal, May 2013

  • Huefner, Anna; Kuan, Wei-Li; Barker, Roger A.
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl400448n

SERS Encoded Silver Pyramids for Attomolar Detection of Multiplexed Disease Biomarkers
journal, January 2015


Effect of Moisture on the Aggregation of Methylene Blue and Rhodamine 6G in Poly(N-vinylpyrrolidone) Film
journal, June 1995


Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption
journal, March 2008

  • Le, Fei; Brandl, Daniel W.; Urzhumov, Yaroslav A.
  • ACS Nano, Vol. 2, Issue 4
  • DOI: 10.1021/nn800047e

Surface-Enhanced Raman Spectroscopy on Two-Dimensional Networks of Gold Nanoparticle−Nanocavity Dual Structures Supported on Dielectric Nanosieves
journal, May 2010

  • Li, Yingshun; Su, Huimin; Wong, Kam Sing
  • The Journal of Physical Chemistry C, Vol. 114, Issue 23
  • DOI: 10.1021/jp100499z

Self-Assembling Nanoparticles at Surfaces and Interfaces
journal, January 2008

  • Kinge, Sachin; Crego-Calama, Mercedes; Reinhoudt, David N.
  • ChemPhysChem, Vol. 9, Issue 1
  • DOI: 10.1002/cphc.200700475

Nanoimprinted SERS-Active Substrates with Tunable Surface Plasmon Resonances
journal, May 2007

  • Alvarez-Puebla, Ramon; Cui, Bo; Bravo-Vasquez, Juan-Pablo
  • The Journal of Physical Chemistry C, Vol. 111, Issue 18
  • DOI: 10.1021/jp070906s

Tunable SERS from aluminium nanohole arrays in the ultraviolet region
journal, January 2011

  • Yang, Zhi-Lin; Li, Qian-Hong; Ren, Bin
  • Chemical Communications, Vol. 47, Issue 13
  • DOI: 10.1039/c0cc05311b

Photochemical Formation of Silver Nanoparticles in Poly( N -vinylpyrrolidone)
journal, January 1996

  • Huang, H. H.; Ni, X. P.; Loy, G. L.
  • Langmuir, Vol. 12, Issue 4
  • DOI: 10.1021/la950435d

Time-dependent SERS of pseudoisocyanine on silver particles generated in silver bromide sol by laser illumination
journal, February 1993


Bifunctional Nano Lycurgus Cup Array Plasmonic Sensor for Colorimetric Sensing and Surface-Enhanced Raman Spectroscopy
journal, July 2015

  • Chang, Te-Wei; Wang, Xinhao; Hsiao, Austin
  • Advanced Optical Materials, Vol. 3, Issue 10
  • DOI: 10.1002/adom.201500092

‘Fairy Chimney’-Shaped Tandem Metamaterials as Double Resonance SERS Substrates
journal, October 2012


Ligand-assisted etching: the stability of silver nanoparticles and the generation of luminescent silver nanodots
journal, January 2014

  • Choi, Sungmoon; Park, Soonyoung; Yu, Junhua
  • Chem. Commun., Vol. 50, Issue 95
  • DOI: 10.1039/C4CC07729F

How To Light Special Hot Spots in Multiparticle–Film Configurations
journal, November 2015


Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection
journal, December 2009

  • Lim, Dong-Kwon; Jeon, Ki-Seok; Kim, Hyung Min
  • Nature Materials, Vol. 9, Issue 1
  • DOI: 10.1038/nmat2596

Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance
journal, January 2008

  • Liu, C. H.; Hong, M. H.; Cheung, H. W.
  • Optics Express, Vol. 16, Issue 14
  • DOI: 10.1364/OE.16.010701

Large-area, lithography-free, low-cost SERS sensor with good flexibility and high performance
journal, August 2016


Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering
journal, January 2003

  • Shafer-Peltier, Karen E.; Haynes, Christy L.; Glucksberg, Matthew R.
  • Journal of the American Chemical Society, Vol. 125, Issue 2
  • DOI: 10.1021/ja028255v

Surface-enhanced Raman spectroscopy: a brief retrospective
journal, January 2005

  • Moskovits, Martin
  • Journal of Raman Spectroscopy, Vol. 36, Issue 6-7
  • DOI: 10.1002/jrs.1362

Colorimetric Plasmon Resonance Imaging Using Nano Lycurgus Cup Arrays
journal, January 2013

  • Gartia, Manas Ranjan; Hsiao, Austin; Pokhriyal, Anusha
  • Advanced Optical Materials, Vol. 1, Issue 1
  • DOI: 10.1002/adom.201200040

Colorimetric Effect of Gold Nanocup Arrays on Fluorescence Amplification
journal, August 2015

  • Seo, Sujin; Ameen, Abid; Liu, Gang Logan
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b03329

Facile Fabrication of High-Density Sub-1-nm Gaps from Au Nanoparticle Monolayers as Reproducible SERS Substrates
journal, October 2016

  • Si, Shaorong; Liang, Wenkai; Sun, Yinghui
  • Advanced Functional Materials, Vol. 26, Issue 44
  • DOI: 10.1002/adfm.201602337

Shell-isolated nanoparticle-enhanced Raman spectroscopy
journal, March 2010

  • Li, Jian Feng; Huang, Yi Fan; Ding, Yong
  • Nature, Vol. 464, Issue 7287, p. 392-395
  • DOI: 10.1038/nature08907

Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy
journal, March 2005

  • Zhang, Xiaoyu; Young, Matthew A.; Lyandres, Olga
  • Journal of the American Chemical Society, Vol. 127, Issue 12
  • DOI: 10.1021/ja043623b

Hot Spot-Localized Artificial Antibodies for Label-Free Plasmonic Biosensing
journal, November 2012

  • Abbas, Abdennour; Tian, Limei; Morrissey, Jeremiah J.
  • Advanced Functional Materials, Vol. 23, Issue 14
  • DOI: 10.1002/adfm.201202370

Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications
journal, August 2011

  • McNay, Graeme; Eustace, David; Smith, W. Ewen
  • Applied Spectroscopy, Vol. 65, Issue 8
  • DOI: 10.1366/11-06365

Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine
journal, July 2016


A reproducible gold SERS substrate assisted by silver nanoparticles without using extra aggregation agents
journal, January 2016

  • Liu, Yuping; Lu, Zhiwei; Lin, Xiang
  • RSC Advances, Vol. 6, Issue 63
  • DOI: 10.1039/C6RA13213H

Panchromatic plasmonic color patterns: from embedded Ag nanohole arrays to elevated Ag nanohole arrays
journal, January 2013

  • Zhang, Xuemin; Ye, Shunsheng; Zhang, Xun
  • J. Mater. Chem. C, Vol. 1, Issue 5
  • DOI: 10.1039/C2TC00013J

Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array
journal, July 2012


A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication
journal, March 2014


Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays
journal, April 2009

  • Yan, Bo; Thubagere, Anupama; Premasiri, W. Ranjith
  • ACS Nano, Vol. 3, Issue 5
  • DOI: 10.1021/nn800836f

Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope
journal, July 2002

  • Hayazawa, Norikiko; Inouye, Yasushi; Sekkat, Zouheir
  • The Journal of Chemical Physics, Vol. 117, Issue 3
  • DOI: 10.1063/1.1485731

Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs
journal, March 2014


Actively Targeted In Vivo Multiplex Detection of Intrinsic Cancer Biomarkers Using Biocompatible SERS Nanotags
journal, February 2014

  • Dinish, U. S.; Balasundaram, Ghayathri; Chang, Young-Tae
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04075