DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

Abstract

In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [2]; ORCiD logo [4]; ORCiD logo [5];  [6];  [7];  [3]
  1. Univ. of Rochester, NY (United States). Dept. of Earth and Environmental Sciences; Stockholm Univ. (Sweden). Dept. of Environmental Science and Analytical Chemistry. Bolin Centre for Climate Research
  2. Univ. of Rochester, NY (United States). Dept. of Earth and Environmental Sciences
  3. Univ. of California, Irvine, CA (United States). Keck Carbon Cycle Accelerator Mass Spectrometry Lab. Dept. of Earth System Science
  4. Univ. of Minnesota, Duluth, MN (United States). Large Lakes Observatory. Dept. of Chemistry and Biochemistry
  5. U.S. Geological Survey, Woods Hole, MA (United States)
  6. Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences; National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Global Monitoring Division. Earth System Research Lab.
  7. Univ. of Colorado, Boulder, CO (United States). Inst. of Arctic and Alpine Research
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE); National Science Foundation (NSF)
OSTI Identifier:
1499955
Grant/Contract Number:  
FE0028980; PLR-1417149
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES

Citation Formats

Sparrow, Katy J., Kessler, John D., Southon, John R., Garcia-Tigreros, Fenix, Schreiner, Kathryn M., Ruppel, Carolyn D., Miller, John B., Lehman, Scott J., and Xu, Xiaomei. Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf. United States: N. p., 2018. Web. doi:10.1126/sciadv.aao4842.
Sparrow, Katy J., Kessler, John D., Southon, John R., Garcia-Tigreros, Fenix, Schreiner, Kathryn M., Ruppel, Carolyn D., Miller, John B., Lehman, Scott J., & Xu, Xiaomei. Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf. United States. https://doi.org/10.1126/sciadv.aao4842
Sparrow, Katy J., Kessler, John D., Southon, John R., Garcia-Tigreros, Fenix, Schreiner, Kathryn M., Ruppel, Carolyn D., Miller, John B., Lehman, Scott J., and Xu, Xiaomei. Wed . "Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf". United States. https://doi.org/10.1126/sciadv.aao4842. https://www.osti.gov/servlets/purl/1499955.
@article{osti_1499955,
title = {Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf},
author = {Sparrow, Katy J. and Kessler, John D. and Southon, John R. and Garcia-Tigreros, Fenix and Schreiner, Kathryn M. and Ruppel, Carolyn D. and Miller, John B. and Lehman, Scott J. and Xu, Xiaomei},
abstractNote = {In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.},
doi = {10.1126/sciadv.aao4842},
journal = {Science Advances},
number = 1,
volume = 4,
place = {United States},
year = {Wed Jan 17 00:00:00 EST 2018},
month = {Wed Jan 17 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1. Fig. 1.: Surface water 14C-CH4 data and potential CH4 endmembers in the U.S. Beaufort Sea shelf study area. (A) Station map showing both the 14C-CH4 data in units of percent Modern Carbon (pMC), with the atmosphere in 1950 defined as 100 pMC (33, 34), as well as the calculated fractionmore » of ancient C–sourced CH4 (fs) (Eqs. 1 to 5) in surface waters at each station. The white curve is the bulk sediment velocity contour (2000 m/s) used to delineate the seaward boundary of the sedimentary section that contains substantial (up to 29%) ice-bearing permafrost in the upper ~600 m (21). White circles and triangles respectively show boreholes (hundreds of meters deep) and geotechnical borings (<100 m) that contain permafrost based on an analysis of well logs and recovery of permafrost samples, respectively (22). Black circles and triangles respectively indicate no permafrost inferred or found in deep boreholes and geotechnical borings (22). (B) System schematic showing 14C values of dissolved CH4 (stations 5 to 8) and possible ancient and modern endmembers that were also measured here. SGD, submarine groundwater discharge; OC, organic carbon; DOC, dissolved organic carbon.« less

Save / Share:

Works referenced in this record:

Arctic methane sources: Isotopic evidence for atmospheric inputs: ARCTIC METHANE SOURCES
journal, November 2011

  • Fisher, R. E.; Sriskantharajah, S.; Lowry, D.
  • Geophysical Research Letters, Vol. 38, Issue 21
  • DOI: 10.1029/2011GL049319

Efficient collection and preparation of methane from low concentration waters for natural abundance radiocarbon analysis
journal, April 2017

  • Sparrow, Katy J.; Kessler, John D.
  • Limnology and Oceanography: Methods, Vol. 15, Issue 7
  • DOI: 10.1002/lom3.10184

Atmospheric constraints on the methane emissions from the East Siberian Shelf
journal, January 2016

  • Berchet, Antoine; Bousquet, Philippe; Pison, Isabelle
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 6
  • DOI: 10.5194/acp-16-4147-2016

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Abrupt increase in permafrost degradation in Arctic Alaska
journal, January 2006

  • Jorgenson, M. Torre; Shur, Yuri L.; Pullman, Erik R.
  • Geophysical Research Letters, Vol. 33, Issue 2
  • DOI: 10.1029/2005GL024960

Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin
journal, May 2017

  • Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.
  • Geochimica et Cosmochimica Acta, Vol. 204
  • DOI: 10.1016/j.gca.2017.01.009

Calculating isotopic fractionation from atmospheric measurements at various scales
journal, January 2003


Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review: Methane Emissions from Arctic Sediments
journal, May 2016

  • James, Rachael H.; Bousquet, Philippe; Bussmann, Ingeborg
  • Limnology and Oceanography, Vol. 61, Issue S1
  • DOI: 10.1002/lno.10307

Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard
journal, September 2015

  • Graves, Carolyn A.; Steinle, Lea; Rehder, Gregor
  • Journal of Geophysical Research: Oceans, Vol. 120, Issue 9
  • DOI: 10.1002/2015JC011084

Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole: METHANE IN THAWING SUBMARINE PERMAFROST
journal, May 2015

  • Overduin, Pier Paul; Liebner, Susanne; Knoblauch, Christian
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 5
  • DOI: 10.1002/2014JG002862

Methane production from bicarbonate and acetate in an anoxic marine sediment
journal, September 1986


Enhanced CO 2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane
journal, May 2017

  • Pohlman, John W.; Greinert, Jens; Ruppel, Carolyn
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 21
  • DOI: 10.1073/pnas.1618926114

Preparation of natural methane samples for stable isotope and radiocarbon analysis: Methane isotope analysis
journal, September 2005

  • Kessler, John D.; Reeburgh, William S.
  • Limnology and Oceanography: Methods, Vol. 3, Issue 9
  • DOI: 10.4319/lom.2005.3.408

Methane fluxes from the sea to the atmosphere across the Siberian shelf seas: CH
journal, June 2016

  • Thornton, Brett F.; Geibel, Marc C.; Crill, Patrick M.
  • Geophysical Research Letters, Vol. 43, Issue 11
  • DOI: 10.1002/2016GL068977

Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere: CH
journal, May 2016

  • Myhre, C. Lund; Ferré, B.; Platt, S. M.
  • Geophysical Research Letters, Vol. 43, Issue 9
  • DOI: 10.1002/2016GL068999

Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability: METHANE FLUX INTO HUDSON CANYON
journal, October 2016

  • Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn
  • Geochemistry, Geophysics, Geosystems, Vol. 17, Issue 10
  • DOI: 10.1002/2016GC006421

The interaction of climate change and methane hydrates: Climate-Hydrates Interactions
journal, February 2017

  • Ruppel, Carolyn D.; Kessler, John D.
  • Reviews of Geophysics, Vol. 55, Issue 1
  • DOI: 10.1002/2016RG000534

Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP
journal, February 2008


Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data: SUBSEA PERMAFROST ON THE U.S. BEAUFORT I
journal, November 2016

  • Brothers, Laura L.; Herman, Bruce M.; Hart, Patrick E.
  • Geochemistry, Geophysics, Geosystems, Vol. 17, Issue 11
  • DOI: 10.1002/2016GC006584

Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints: SUBSEA PERMAFROST IN U.S. BEAUFORT II
journal, November 2016

  • Ruppel, Carolyn D.; Herman, Bruce M.; Brothers, Laura L.
  • Geochemistry, Geophysics, Geosystems, Vol. 17, Issue 11
  • DOI: 10.1002/2016GC006582

The application and interpretation of Keeling plots in terrestrial carbon cycle research
journal, March 2003

  • Pataki, D. E.; Ehleringer, J. R.; Flanagan, L. B.
  • Global Biogeochemical Cycles, Vol. 17, Issue 1, Article No. 1022
  • DOI: 10.1029/2001GB001850

Measurements of δ 13 C in CH 4 and using particle dispersion modeling to characterize sources of Arctic methane within an air mass : Identifying Sources of Arctic Methane
journal, December 2016

  • France, J. L.; Cain, M.; Fisher, R. E.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 23
  • DOI: 10.1002/2016JD026006

Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers
journal, May 2012

  • Walter Anthony, Katey M.; Anthony, Peter; Grosse, Guido
  • Nature Geoscience, Vol. 5, Issue 6
  • DOI: 10.1038/ngeo1480

Reassessment of the 13 C/ 12 C and 14 C/ 12 C isotopic fractionation ratio and its impact on high-precision radiocarbon dating
journal, September 2017

  • Fahrni, Simon M.; Southon, John R.; Santos, Guaciara M.
  • Geochimica et Cosmochimica Acta, Vol. 213
  • DOI: 10.1016/j.gca.2017.05.038

A survey of methane isotope abundance ( 14 C, 13 C, 2 H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters : UNUSUAL CH
journal, December 2008

  • Kessler, J. D.; Reeburgh, W. S.; Valentine, D. L.
  • Journal of Geophysical Research: Oceans, Vol. 113, Issue C12
  • DOI: 10.1029/2008JC004822

Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water
journal, October 1979

  • Wiesenburg, Denis A.; Guinasso, Norman L.
  • Journal of Chemical & Engineering Data, Vol. 24, Issue 4
  • DOI: 10.1021/je60083a006

Increase in the rate and uniformity of coastline erosion in Arctic Alaska: HIGHER AND MORE UNIFORM ARCTIC EROSION
journal, February 2009

  • Jones, B. M.; Arp, C. D.; Jorgenson, M. T.
  • Geophysical Research Letters, Vol. 36, Issue 3
  • DOI: 10.1029/2008GL036205

The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice
journal, October 2015

  • Shakhova, Natalia; Semiletov, Igor; Sergienko, Valentin
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2052
  • DOI: 10.1098/rsta.2014.0451

The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas
journal, January 1958


Carbon-14 in Methane Sources and in Atmospheric Methane: The Contribution from Fossil Carbon
journal, July 1989


Escape of methane gas from the seabed along the West Spitsbergen continental margin: ARCTIC METHANE GAS PLUMES
journal, August 2009

  • Westbrook, Graham K.; Thatcher, Kate E.; Rohling, Eelco J.
  • Geophysical Research Letters, Vol. 36, Issue 15
  • DOI: 10.1029/2009GL039191

Rising atmospheric methane: 2007-2014 growth and isotopic shift: RISING METHANE 2007-2014
journal, September 2016

  • Nisbet, E. G.; Dlugokencky, E. J.; Manning, M. R.
  • Global Biogeochemical Cycles, Vol. 30, Issue 9
  • DOI: 10.1002/2016GB005406

Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites: SGD methane transport
journal, June 2015

  • Lecher, Alanna L.; Kessler, John; Sparrow, Katy
  • Limnology and Oceanography, Vol. 61, Issue S1
  • DOI: 10.1002/lno.10118

Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux: Dissolved methane in the Beaufort Sea and the Arctic Ocean
journal, November 2016

  • Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.
  • Limnology and Oceanography, Vol. 61, Issue S1
  • DOI: 10.1002/lno.10457

Marine methane paradox explained by bacterial degradation of dissolved organic matter
journal, November 2016

  • Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.
  • Nature Geoscience, Vol. 9, Issue 12
  • DOI: 10.1038/ngeo2837

Discussion Reporting of 14 C Data
journal, January 1977


Sources of terrigenous inputs to surface sediments of the Colville River Delta and Simpson's Lagoon, Beaufort Sea, Alaska: INPUTS TO THE COLVILLE RIVER DELTA, AK
journal, June 2013

  • Schreiner, Kathryn M.; Bianchi, Thomas S.; Eglinton, Timothy I.
  • Journal of Geophysical Research: Biogeosciences, Vol. 118, Issue 2
  • DOI: 10.1002/jgrg.20065

Changes in Arctic melt season and implications for sea ice loss: Stroeve et al.: Arctic melt season changes
journal, February 2014

  • Stroeve, J. C.; Markus, T.; Boisvert, L.
  • Geophysical Research Letters, Vol. 41, Issue 4
  • DOI: 10.1002/2013GL058951

Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event
journal, August 2017

  • Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich
  • Nature, Vol. 548, Issue 7668
  • DOI: 10.1038/nature23316

Rising atmospheric methane: 2007-2014 growth and isotopic shift
text, January 2016

  • Nisbet, Eg; Dlugokencky, Ej; Manning, Mr
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.6326

Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review
text, January 2016


Measurements of δ$^{13}$C in CH$_{4}$ and using particle dispersion modeling to characterize sources of Arctic methane within an air mass
text, January 2016

  • France, Jl; Cain, Michelle; Fisher, Re
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.7768

Evidence for permafrost thaw and transport from an Alaskan North Slope watershed: PERMAFROST THAW AND TRANSPORT IN ALASKASchreiner Permafrost thaw and transport in Alaska
journal, May 2014

  • Schreiner, Kathryn M.; Bianchi, Thomas S.; Rosenheim, Brad E.
  • Geophysical Research Letters, Vol. 41, Issue 9
  • DOI: 10.1002/2014gl059514

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice
journal, October 2015

  • Shakhova, Natalia; Semiletov, Igor; Sergienko, Valentin
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2052
  • DOI: 10.1098/rsta.2014.0451

Carbon-14 in Methane Sources and in Atmospheric Methane: The Contribution from Fossil Carbon
journal, July 1989


Calculating isotopic fractionation from atmospheric measurements at various scales
journal, January 2003


Atmospheric constraints on the methane emissions from the East Siberian Shelf
journal, January 2016

  • Berchet, Antoine; Bousquet, Philippe; Pison, Isabelle
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 6
  • DOI: 10.5194/acp-16-4147-2016

Works referencing / citing this record:

Methane Feedbacks to the Global Climate System in a Warmer World
journal, March 2018

  • Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas
  • Reviews of Geophysics, Vol. 56, Issue 1
  • DOI: 10.1002/2017rg000559

Radiocarbon Analysis of Methane at the NERC Radiocarbon Facility (East Kilbride)
journal, April 2019

  • Garnett, M. H.; Murray, C.; Gulliver, P.
  • Radiocarbon, Vol. 61, Issue 5
  • DOI: 10.1017/rdc.2019.3

Methane Sources in the Waters of Lake Michigan and Lake Superior as Revealed by Natural Radiocarbon Measurements
journal, May 2019

  • Joung, DongJoo; Leonte, Mihai; Kessler, John D.
  • Geophysical Research Letters, Vol. 46, Issue 10
  • DOI: 10.1029/2019gl082531

Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions
journal, February 2020


Interpreting contemporary trends in atmospheric methane
journal, February 2019

  • Turner, Alexander J.; Frankenberg, Christian; Kort, Eric A.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 8
  • DOI: 10.1073/pnas.1814297116

Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions
journal, January 2020

  • Thornton, Brett F.; Prytherch, John; Andersson, Kristian
  • Science Advances, Vol. 6, Issue 5
  • DOI: 10.1126/sciadv.aay7934

Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions
text, January 2020

  • Hmiel, B.; Petrenko, V. V.; Dyonisius, M. N.
  • Springer Nature
  • DOI: 10.48350/158637

Interpreting contemporary trends in atmospheric methane
journal, February 2019

  • Turner, Alexander J.; Frankenberg, Christian; Kort, Eric A.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 8
  • DOI: 10.1073/pnas.1814297116

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.