DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes

Abstract

Electrodeposition is a widely practiced method for creating metal, colloidal, and polymer coatings on conductive substrates. In the Newtonian liquid electrolytes typically used, the process is fundamentally unstable. The underlying instabilities have been linked to failure of microcircuits, dendrite formation on battery electrodes, and overlimiting conductance in ion-selective membranes. We report that viscoelastic electrolytes composed of semidilute solutions of very high–molecular weight neutral polymers suppress these instabilities by multiple mechanisms. The voltage window ΔV in which a liquid electrolyte can operate free of electroconvective instabilities is shown to be markedly extended in viscoelastic electrolytes and is a power-law function, ΔV : η1/4, of electrolyte viscosity, η. This power-law relation is replicated in the resistance to ion transport at liquid/solid interfaces. We discuss consequences of our observations and show that viscoelastic electrolytes enable stable electrodeposition of many metals, with the most profound effects observed for reactive metals, such as sodium and lithium. This finding is of contemporary interest for high-energy electrochemical energy storage.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Cornell Univ., Ithaca, NY (United States)
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1499929
Grant/Contract Number:  
SC0016082
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Wei, Shuya, Cheng, Zhu, Nath, Pooja, Tikekar, Mukul D., Li, Gaojin, and Archer, Lynden A. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes. United States: N. p., 2018. Web. doi:10.1126/sciadv.aao6243.
Wei, Shuya, Cheng, Zhu, Nath, Pooja, Tikekar, Mukul D., Li, Gaojin, & Archer, Lynden A. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes. United States. https://doi.org/10.1126/sciadv.aao6243
Wei, Shuya, Cheng, Zhu, Nath, Pooja, Tikekar, Mukul D., Li, Gaojin, and Archer, Lynden A. Fri . "Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes". United States. https://doi.org/10.1126/sciadv.aao6243. https://www.osti.gov/servlets/purl/1499929.
@article{osti_1499929,
title = {Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes},
author = {Wei, Shuya and Cheng, Zhu and Nath, Pooja and Tikekar, Mukul D. and Li, Gaojin and Archer, Lynden A.},
abstractNote = {Electrodeposition is a widely practiced method for creating metal, colloidal, and polymer coatings on conductive substrates. In the Newtonian liquid electrolytes typically used, the process is fundamentally unstable. The underlying instabilities have been linked to failure of microcircuits, dendrite formation on battery electrodes, and overlimiting conductance in ion-selective membranes. We report that viscoelastic electrolytes composed of semidilute solutions of very high–molecular weight neutral polymers suppress these instabilities by multiple mechanisms. The voltage window ΔV in which a liquid electrolyte can operate free of electroconvective instabilities is shown to be markedly extended in viscoelastic electrolytes and is a power-law function, ΔV : η1/4, of electrolyte viscosity, η. This power-law relation is replicated in the resistance to ion transport at liquid/solid interfaces. We discuss consequences of our observations and show that viscoelastic electrolytes enable stable electrodeposition of many metals, with the most profound effects observed for reactive metals, such as sodium and lithium. This finding is of contemporary interest for high-energy electrochemical energy storage.},
doi = {10.1126/sciadv.aao6243},
journal = {Science Advances},
number = 3,
volume = 4,
place = {United States},
year = {Fri Mar 23 00:00:00 EDT 2018},
month = {Fri Mar 23 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 64 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1. Fig. 1. : Electrochemical characteristics of the viscoelastic electrolytes. (A) I-V curves of electrolytes with different polymer concentrations. (B to D) Voltage versus time profiles measured in electrolytes with (B) no PMMA, (C) 2 wt % PMMA, and (D) 8 wt % PMMA at current densities ranging from 0.316 tomore » 2.526 mA/cm2. (E) Average tracer particle velocities measured in an optical lithium||stainless steel cell containing control (no polymer) and viscoelastic liquid electrolytes containing 4 wt % polymer. (F) Average tracer particle velocities measured in control and viscoelastic liquid electrolytes as a function of current density.« less

Save / Share:

Works referenced in this record:

Modern Electroplating
journal, January 1964

  • Lowenheim, F. A.; Senderoff, Seymour
  • Journal of The Electrochemical Society, Vol. 111, Issue 11
  • DOI: 10.1149/1.2425993

Deionization shocks in microstructures
journal, December 2011


Effect of Turbulence on Limiting Current in Electrodialysis Cells
journal, December 1959

  • Cowan, Donald A.; Brown, Jerry H.
  • Industrial & Engineering Chemistry, Vol. 51, Issue 12
  • DOI: 10.1021/ie50600a026

Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
journal, October 2015


Review on gel polymer electrolytes for lithium batteries
journal, January 2006


Electric Birefringence of Electrolytes near Charged Surfaces, II:  Effect of Polymeric Additives
journal, October 2007

  • Saha, Sourav; Archer, Lynden A.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 39
  • DOI: 10.1021/jp0700231

Nonflammable perfluoropolyether-based electrolytes for lithium batteries
text, January 2014

  • L., Thelen, Jacob; S., Battaglia, Vincent; A., Pandya, Ashish
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/29h4-rr73

Modern electroplating
journal, June 1954


Electro-osmotic slip and electroconvective instability
journal, May 2007


Electrochemical aspects of the generation of ramified metallic electrodeposits
journal, December 1990


Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries.
journal, May 2006


Role of the membrane surface in concentration polarization at ion-exchange membrane
journal, January 1988


Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes
journal, January 2017


Electric Birefringence of Electrolytes near Charged Surfaces, I
journal, October 2007

  • Saha, Sourav; Archer, Lynden A.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 39
  • DOI: 10.1021/jp0700229

Electrodeposition of composite coatings containing nanoparticles in a metal deposit
journal, September 2006


Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study
journal, January 2014

  • Xu, Chao; Sun, Bing; Gustafsson, Torbjörn
  • J. Mater. Chem. A, Vol. 2, Issue 20
  • DOI: 10.1039/C4TA00214H

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions
journal, July 2016

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1600320

The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


Copper Deposition in the Presence of Polyethylene Glycol
journal, January 1998

  • Kelly, James J.
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838829

Nonflammable perfluoropolyether-based electrolytes for lithium batteries
journal, February 2014

  • Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1314615111

Effect of Electrolyte Composition on Lithium Dendrite Growth
journal, January 2008

  • Crowther, Owen; West, Alan C.
  • Journal of The Electrochemical Society, Vol. 155, Issue 11
  • DOI: 10.1149/1.2969424

A stable room-temperature sodium–sulfur battery
journal, June 2016

  • Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11722

Formation of a mesh-like electrodeposit induced by electroconvection
journal, February 1994

  • Wang, Mu; van Enckevort, Willem J. P.; Ming, Nai-ben
  • Nature, Vol. 367, Issue 6462
  • DOI: 10.1038/367438a0

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Copper Deposition in the Presence of Polyethylene Glycol: II. Electrochemical Impedance Spectroscopy
journal, October 1998

  • Kelly, James J.; West, Alan C.
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838830

Electrodeposition of polymer coatings
journal, July 1988


Calculation of the space charge in electrodeposition from a binary electrolyte
journal, February 2006


Mechanics and Prediction of Turbulent Drag Reduction with Polymer Additives
journal, January 2008


Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


100k Cycles and Beyond: Extraordinary Cycle Stability for MnO 2 Nanowires Imparted by a Gel Electrolyte
journal, April 2016


Electro-osmotically induced convection at a permselective membrane
journal, August 2000


Field-Induced Layering of Colloidal Crystals
journal, May 1996


An EIS Study of the Anode Li/PEO-LiTFSI of a Li Polymer Battery
journal, January 2003

  • Bouchet, R.; Lascaud, S.; Rosso, M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1609997

Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface
journal, November 2013

  • Druzgalski, C. L.; Andersen, M. B.; Mani, A.
  • Physics of Fluids, Vol. 25, Issue 11
  • DOI: 10.1063/1.4818995

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries.
journal, May 2006


Drag reduction in turbulent flow by polymer additives
journal, January 1973


Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
journal, October 2015


Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface
journal, November 2013

  • Druzgalski, C. L.; Andersen, M. B.; Mani, A.
  • Physics of Fluids, Vol. 25, Issue 11
  • DOI: 10.1063/1.4818995

Nonflammable electrolyte enhances battery safety
journal, February 2014

  • Hu, Liangbing; Xu, Kang
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1401033111

Role of convection in thin-layer electrodeposition
journal, April 1995

  • Huth, John M.; Swinney, Harry L.; McCormick, William D.
  • Physical Review E, Vol. 51, Issue 4
  • DOI: 10.1103/physreve.51.3444

Equilibrium electro-osmotic instability in concentration polarization at a perfectly charge-selective interface
journal, September 2017


Coupling between Buoyancy Forces and Electroconvective Instability near Ion-Selective Surfaces
journal, May 2016


Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions
journal, July 2016

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1600320

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Field-Induced Layering of Colloidal Crystals
journal, May 1996


Works referencing / citing this record:

Designing solid-state interfaces on lithium-metal anodes: a review
journal, September 2019


Solid-state polymer electrolytes for high-performance lithium metal batteries
journal, September 2019


Electroconvection and Morphological Instabilities in Potentiostatic Electrodeposition across Liquid Electrolytes with Polymer Additives
journal, January 2018

  • Tikekar, Mukul D.; Li, Gaojin; Archer, Lynden A.
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0271816jes

Investigation of the temperature-dependent behaviours of Li metal anode
journal, January 2019

  • Guo, Yanpeng; Li, Dian; Xiong, Rundi
  • Chemical Communications, Vol. 55, Issue 66
  • DOI: 10.1039/c9cc04897a

Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries
journal, November 2018


Tuning the Electron Density of Aromatic Solvent for Stable Solid-Electrolyte-Interphase Layer in Carbonate-Based Lithium Metal Batteries
journal, October 2018

  • Yoo, Dong-Joo; Yang, Sungyun; Yun, Yang Sik
  • Advanced Energy Materials, Vol. 8, Issue 33
  • DOI: 10.1002/aenm.201802365

Viscoelastic and Nonflammable Interface Design–Enabled Dendrite‐Free and Safe Solid Lithium Metal Batteries
journal, February 2019

  • Ma, Qiang; Zeng, Xian‐Xiang; Yue, Junpei
  • Advanced Energy Materials, Vol. 9, Issue 13
  • DOI: 10.1002/aenm.201803854

Electroconvection in a Viscoelastic Electrolyte
journal, March 2019


Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes
journal, January 2020

  • Xie, Xuesong; Liang, Shuquan; Gao, Jiawei
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee03545a

Nip the Sodium Dendrites in the Bud on Planar Doped Graphene in Liquid/Gel Electrolytes
journal, January 2019

  • Hu, Xiaofei; Joo, Paul Hyunggyu; Wang, Huan
  • Advanced Functional Materials, Vol. 29, Issue 9
  • DOI: 10.1002/adfm.201807974

In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
journal, January 2019

  • Zhou, Hongyao; Liu, Haodong; Li, Yejing
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta02341k

Electrophoresis in dilute polymer solutions
journal, December 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.